IMMUNOPHENOTYPE OF MESENCHYMAL STEM CELLS DERIVED FROM EPICARDIAL AND PERIVASCULAR ADIPOSE TISSUE IN PATIENTS WITH CARDIOVASCULAR DISEASES

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Aim: to evaluate the immunophenotype of adipose tissue stem cells isolated from epicardial and perivascular fat depots in patients with coronary heart disease and acquired heart defects. Results: In cell culture obtained from epicardial adipose tissue (EAT) and perivascular adipose tissue (PVAT) (2nd passage) in patients with both coronary heart disease and acquired heart defects, a high (over 90%) expression of membrane proteins characteristic of stem cells. In addition to the main population, with both in the EAT culture and in the PVAT, there were 2 minor ones: 1 – CD90-, CD105+, CD34-/+, CD73+, CD45- is presumably endothelial population, 2 – CD90+, CD105-, CD34-, CD73-, CD45- is the smallest population.
Conclusion: In the early stages of cultivation, cells of the stromal vascular fraction isolated from epicardial and perivascular adipose tissue express surface markers characteristic of adipose tissue stem cells.

Sobre autores

E. Uchasova

Research Institute for Complex Issues of Cardiovascular Diseases

Autor responsável pela correspondência
Email: evg.uchasova@yandex.ru
Russia, Kemerovo

Yu. Dyleva

Research Institute for Complex Issues of Cardiovascular Diseases

Email: evg.uchasova@yandex.ru
Russia, Kemerovo

E. Belik

Research Institute for Complex Issues of Cardiovascular Diseases

Email: evg.uchasova@yandex.ru
Russia, Kemerovo

V. Matveeva

Research Institute for Complex Issues of Cardiovascular Diseases

Email: evg.uchasova@yandex.ru
Russia, Kemerovo

S. Gusev

Research Institute for Complex Issues of Cardiovascular Diseases

Email: evg.uchasova@yandex.ru
Russia, Kemerovo

O. Tarasova

Kemerovo State Medical University Ministry of Health of the Russian Federation

Email: evg.uchasova@yandex.ru
Russia, Kemerovo

O. Gruzdeva

Research Institute for Complex Issues of Cardiovascular Diseases; Kemerovo State Medical University Ministry of Health of the Russian Federation

Email: evg.uchasova@yandex.ru
Russia, Kemerovo; Russia, Kemerovo

Bibliografia

  1. Zuk PA, Zhu M, Mizuno H, Huang J, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7: 211–228. https://doi.org/10.1089/107632701300062859
  2. Robert AW, Marcon BH, Dallagiovanna B, Shigunov P (2020) Adipogenesis, Osteogenesis, and Chondrogenesis of Human Mesenchymal Stem/Stromal Cells: A Comparative Transcriptome Approach. Front Cell Dev Biol 8: 561. https://doi.org/10.3389/fcell.2020.00561
  3. Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, Redl H, Rubin JP, Yoshimura K, Gimble JM (2013) Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the international So. Cytotherapy 15: 641–648. https://doi.org/10.1016/j.jcyt.2013.02.006
  4. Bucan A, Dhumale P, Jørgensen MG, Dalaei F, Wiinholt A, Hansen CR, Hvidsten S, Baun C, Hejbøl EK, Schrøder HD, Sørensen JA (2020) Comparison between stromal vascular fraction and adipose derived stem cells in a mouse lymphedema model. J Plast Surg and Hand Surg 54 (5): 302–311. https://doi.org/10.1080/2000656X.2020.1772799
  5. Krawczenko A, Klimczak A (2022) Adipose Tissue-Derived Mesenchymal Stem/Stromal Cells and Their Contribution to Angiogenic Processes in Tissue Regeneration. Int J Mol Sci 23 (5): 2425. https://doi.org/10.3390/ijms23052425
  6. Dubey NK, Mishra VK, Dubey R, Deng YH, Tsai FC, Deng WP (2018) Revisiting the Advances in Isolation, Characterization and Secretome of Adipose-Derived Stromal/Stem Cells. Int J Mol Sci 19 (8): 2200. https://doi.org/10.3390/ijms19082200
  7. Silva KR, Baptista S (2019) Adipose-derived stromal/stem cells from different adipose depots in obesity development. World J Stem Cells 11 (3): 147–166. https://doi.org/10.4252/wjsc.v11.i3.14
  8. Mitchell JB, Mcintosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A, Di Halvorsen Y, Storms RW, Goh B, Kilroy G, Wu X, Gimble JM (2006) Immunophenotype of Human Adipose-Derived Cells: Temporal Changes in Stromal-Associated and Stem Cell–Associated Markers. Stem Cells 24 (2): 376–385. https://doi.org/10.1634/stemcells.2005-0234
  9. Mohamed-Ahmed S, Fristad I, Lie SA, Suliman S, Mustafa K, Vindenes H, Idris SB (2018) Adipose-derived and bone marrow mesenchymal stem cells: a donor-matched comparison. Stem Cell Res Ther 9 (1): 168. https://doi.org/10.1186/s13287-018-0914-1
  10. Ni H, Zhao Y, Ji Y, Shen J, Xiang M, Xie Y (2019) Adipose-derived stem cells contribute to cardiovascular remodeling. Aging 11 (23): 11756–11769. https://doi.org/10.1186/s13287-018-0914-1
  11. Dykstra JA, Facile T, Patrick RJ, Francis KR, Milanovich S, Weimer JM, Kota DJ (2017) Concise Review: Fat and Furious: Harnessing the Full Potential of Adipose-Derived Stromal Vascular Fraction. Stem Cells Transl Med 6 (4): 1096–1108. https://doi.org/10.1002/sctm.16-0337
  12. Pan Z, Zhou Z, Zhang H, Zhao H, Song P, Wang D, Yin J, Zhao W, Xie Z, Wang F, Li Y, Guo C, Zhu F, Zhang L, Wang Q (2019) CD90 serves as differential modulator of subcutaneous and visceral adipose-derived stem cells by regulating AKT activation that influences adipose tissue and metabolic homeostasis. Stem Cell Res Ther 10 (1): 355.
  13. Tang Y, Pan ZY, Zou Y, He Y, Yang PY, Tang QQ, Yin FA (2017) A comparative assessment of adipose-derived stem cells from subcutaneous and visceral fat as a potential cell source for knee osteoarthritis treatment. J Cell Mol Med 21 (9): 2153–2162. https://doi.org/10.1111/jcmm.13138
  14. Tan K, Zhu H, Zhang J, Ouyang W, Tang J, Zhang Y, Qiu L, Liu X, Ding Z, Deng X (2019) CD73 Expression on Mesenchymal Stem Cells Dictates the Reparative Properties via Its Anti-Inflammatory Activity. Stem Cells Internat 8717694. https://doi.org/10.1155/2019/8717694
  15. Lv XJ, Zhou GD, Liu Y, Liu X, Chen JN, Luo XS, Cao YL (2012) In vitro proliferation and differentiation of adipose-derived stem cells isolated using anti-CD105 magnetic beads. Int J Mol Med 30 (4): 826–834. https://doi.org/10.3892/ijmm.2012.1063
  16. Li Q, Qi LJ, Guo ZK, Li H, Zuo HB, Li NN (2013) CD73+ adipose-derived mesenchymal stem cells possess higher potential to differentiate into cardiomyocytes in vitro. J Mol Histol 44 (4): 411–422. https://doi.org/10.1007/s10735-013-9492-9
  17. Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM (2001) Surface protein characterization of human adipose tissuederived stromal cells. J Cell Physiol 189: 54–63.https://doi.org/10.1002/jcp.1138
  18. Planat-Benard V, Silvestre JS, Cousin B, André M, Nibbelink M, Tamarat R, Clergue M, Manneville C, Saillan-Barreau C, Duriez M, Tedgui A, Levy B, Pénicaud L, Casteilla L (2004) Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 109: 656–663. https://doi.org/10.1161/01.CIR.0000114522.38265.61
  19. Fraser JK, Wulur I, Alfonso Z, Hedrick MH (2006) Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol 24 (4): 150–154. https://doi.org/10.1016/j.tibtech.2006.01.010

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (1MB)
3.

Baixar (369KB)
4.

Baixar (520KB)
5.

Baixar (502KB)
6.

Baixar (512KB)

Declaração de direitos autorais © Е.Г. Учасова, Ю.А. Дылева, Е.В. Белик, В.Г. Матвеева, С.М. Гусев, О.Л. Тарасова, О.В. Груздева, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies