Влияние холодового шока на размеры и активность ядерных эритроцитов Scorpaena porcus (linnaeus, 1758) (эксперименты in vitro)

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В условиях эксперимента in vitro исследовали влияние холодового шока на эритроциты морского ерша (Scorpaena porcus L., 1758). Образцы крови содержали при 22°С (контроль) и 4°С (опыт) (градиент 18°С). Экспозиция составляла 3 ч. Холодовой шок не оказывал значимого влияния на показатели жизнедеятельности эритроцитов морского ерша. Клетки сохраняли целостность цитоплазматических мембран, потенциал митохондрий и уровень окислительных процессов, о чем свидетельствовали постоянные значения интенсивности флуоресценции пропидиум йодида (PI), родамина123 (R123) и 2-7-дихлорфлуоресцеин-диацетата (DCF-DA). Основные изменения были связаны с формой эритроцита и функциональной активностью ядра. Клетки приобретали округлые очертания, размеры ядра увеличивались, что привело к росту ядерно-цитоплазматического отношения (NCR) на фоне снижения интенсивности флуоресценции SYBR Green I. Допускается, что это связано с изменением состояния цитоскелета и активизацией транскрипционных процессов.

Об авторах

Н. Е. Шалагина

Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр
“Институт биологии южных морей имени А.О. Ковалевского РАН”

Автор, ответственный за переписку.
Email: nadezda-shalagina@yandex.ru
Россия, Севастополь

А. А. Солдатов

Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр
“Институт биологии южных морей имени А.О. Ковалевского РАН”

Email: nadezda-shalagina@yandex.ru
Россия, Севастополь

Ю. В. Богданович

Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр
“Институт биологии южных морей имени А.О. Ковалевского РАН”

Email: nadezda-shalagina@yandex.ru
Россия, Севастополь

Список литературы

  1. Donaldson MR, Cooke SJ, Patterson DA, Macdonald JS (2008) Cold shock and fish. J Fish Biol 73: 1491–1530. https://doi.org/10.1111/j.1095-8649.2008.02061.x
  2. Reid CH, Patrick PH, Rytwinski T, Taylor JJ, Willmor WG, Reesor B, Cooke SJ (2022) An updated review of cold shock and cold stress in fish. J Fish Biol 100: 1102–1137. https://doi.org/10.1111/jfb.15037
  3. Koakoski G, Oliveira TA, da Rosa JGS, Fagundes M, Kreutz LC, Barcellos LJG (2012) Divergent time course of cortisol response to stress in fish of different ages. Physiol Behav 106 (2): 129–132. https://doi.org/10.1016/j.physbeh.2012.01.013
  4. He J, Qiang J, Yang H, Xu P, Zhu ZX, Yang RQ (2015) Changes in the fatty acid composition and regulation of antioxidant enzymes and physiology of juvenile genetically improved farmed tilapia Oreochromis niloticus (L.), subjected to short-term low temperature stress. J Thermal Biol 53:90–97. https://doi.org/10.1016/j.jtherbio.2015.08.010
  5. Bai Y, Liu H, Huang B, Wagle M, Guo S (2016) Identification of environmental stressors and validation of light preference as a measure of anxiety in larval zebrafish. BMC Neurosci 17 (1): 1–12. https://doi.org/10.1186/s12868-016-0298-z
  6. Mattioli CC, Takata R, de Oliveira Paes Leme F, Costa DC, Luz RK (2020) Response of juvenile Lophiosilurus alexandri to osmotic and thermic shock. Fish Physiol Biochem 46 (1): 51–61. https://doi.org/10.1007/s10695-019-00696-5
  7. Inoue LAKA, Moraes G, Iwama GK, Afonso LOB (2008) Physiological stress responses in the warm-water fish matrinxã (Brycon amazonicus) subjected to a sudden cold shock. Acta Amazonica 38: 603–609. https://doi.org/10.1590/S0044-59672008000400002
  8. Adloo MN, Soltanian S, Hafeziyeh M, Ghadimi N (2015) Cortisol and glucose responses in juvenile striped catfish subjected to a cold shock. Veterinary Sci Devel 5 (2): 78–81.
  9. Tseng YC, Liu ST, Hu MY, Chen RD, Lee JR, Hwang PP (2014) Brain functioning under acute hypothermic stress supported by dynamic monocarboxylate utilization and transport in ectothermic fish. Front Zool 11 (1): 1–20.
  10. Choi CY, Kim TH, Choi YJ, Choi JY, Oh SY, Kim BS (2017) Effects of various wavelengths of light on physiological stress and non-specific immune responses in black rockfish Sebastes schlegelii subjected to water temperature change. Fish Sci 83 (6): 997–1006. https://doi.org/10.1007/s12562-017-1136-7
  11. Giacomin M, Eom J, Schulte PM, Wood CM (2019) Acute temperature effects on metabolic rate, ventilation, diffusive water exchange, osmoregulation, and acid–base status in the Pacific hagfish (Eptatretus stoutii). J Compar Physiol B 189 (1): 17–35. https://doi.org/10.1007/s00360-018-1191-0
  12. Chang CH, Zhou XW, Wang YC, Lee TH (2020) Differential effects of hypothermal stress on lactate metabolism in fresh water-and seawater-acclimated milkfish, Chanos chanos. Compar Biochem Physiol Part A: Mol & Integr Physiol 248: 110744. https://doi.org/10.1016/j.cbpa.2020.110744
  13. Bacchetta C, Ale A, Rossi AS, Karakachoff M, Cazenave J (2020) Effects of cold stress on juvenile Piaractus mesopotamicus and the mitigation by β-carotene. J Thermal Biol 88: 102497. https://doi.org/10.1016/j.jtherbio.2019.102497
  14. Hwang GC, Watabe S, Hashimoto K (1990) Changes in carp myosin ATPase induced by temperature acclimation. J Comp Physiol B 160 (3): 233–239. https://doi.org/10.1007/bf00302588
  15. Vanlandeghem MM, Wahl DH, Suski CD (2010) Physiological responses of largemouth bass to acute temperature and oxygen stressors. Fishe Managem Ecol 17 (5): 414–425. https://doi.org/10.1111/j.1365-2400.2010.00740.x
  16. Jun Q, Hong Y, Hui W, Didlyn KM, Jie H, Pao X (2015) Physiological responses and HSP70 mRNA expression in GIFT tilapia juveniles, Oreochromis niloticus under short-term crowding. Aquacult Res 46 (2): 335–345. https://doi.org/10.1111/are.12189
  17. Mihailovich M, Militti C, Gabaldo T, Gebauer F (2010) Eukaryotic cold shock domain proteins: Highly versatile regulators of gene expression. Bioessays 32: 109–118. https://doi.org/10.1002/bies.200900122
  18. Sharma J, Singh SP, Chakrabarti R (2017) Effect of temperature on digestive physiology, immune-modulatory parameters, and expression level of Hsp and LDH genes in Catla catla (Hamilton, 1822). Aquaculture 479: 134–141. https://doi.org/10.1016/j.aquaculture.2017.05.031
  19. Basu N, Todgham AE, Ackerman PA, Bibeau MR, Nakano K, Schulte PM, Iwama GK (2002) Heat shock protein genes and their functional significance in fish. Gene 295 (2): 173–183. https://doi.org/10.1016/S0378-1119(02)00687-X
  20. Soldatov AA (2005) Peculiarities of organization and functioning of the fish red blood system. Journal of Evolutionary Biochemistry and Physiology 41(3):272–281.
  21. Khrushchov NG, Lange MA, Zolotova TE, Bessonov AV (1993) Characteristics of erythroid sprout cells in mirror carp (perspectives of use in estimating the fish physiological-state). Izvestiya akademii nauk seriya biologicheskaya (1): 83–87.
  22. Fischer U, Ototake M, Nakanishi T (1998) Life span of circulating blood cells in ginbuna crucian carp (Carassius auratus langsdorfii). Fish & Shellfish Immunology 8 (5): 339–349. https://doi.org/10.1006/fsim.1998.0144
  23. Phillips MC, Moyes CD, Tufts BL (2000) The effects of cell ageing on metabolism in rainbow trout (Oncorhynchus mykiss) red blood cells. J Exp Biol 203 (6): 1039–1045. https://doi.org/10.1242/jeb.203.6.1039
  24. Cossins AR, Gibson JS (1997) Volume-sensitive transport systems and volume homeostasis in vertebrate red blood cells. J Exp Biol 200 (2): 343–352. https://doi.org/10.1242/jeb.200.2.343
  25. Boutilier RG, Ferguson RA (1989) Nucleated red cell function: metabolism and pH regulation. Canad J Zool 67 (12): 2986–2993. https://doi.org/10.1139/z89-421
  26. Андреева АЮ, Солдатов АА (2012) Изменения объема ядерных эритроцитов скорпены в условиях внешней гипоксии (эксперименты in vitro). Доповіді Національної академії наук України (10): 149–153. [Andreeva AYu, Soldatov AA (2012) Changes in the volume of nuclear erythrocytes of scorpaena under conditions of external hypoxia (in vitro experiments). Dopovіdі Nacіonal’noї akademії nauk Ukraїni (10): 149–153. (In Russ)].
  27. Soldatov AA, Kukhareva TA, Andreeva AY, Parfenova IA, Rychkova VN, Zin’kova DS (2017) The functional morphology of erythrocytes of the black scorpion fish Scorpaena porcus (Linnaeus, 1758) (Scorpaeniformes: Scorpaenidae) during hypoxia. Russ J Marine Biol 43 (5): 368–373. https://doi.org/10.1134/S1063074017050091
  28. Световидов АН (1964) Рыбы Черного моря. М.: Наука. [Svetovidov AN (1964) Ruby Chernogo moray [Fish of the Black Sea] M.: Nauka. (In Russ)].
  29. Silvestrova KP, Zatsepin AG, Myslenkov SA (2017) Coastal upwelling in the Gelendzhik area of the Black Sea: Effect of wind and dynamics. Oceanology 57 (4): 469–477. https://doi.org/10.1134/S0001437017040178
  30. Soldatov AA (2005) Physiological aspects of effects of urethane anesthesia on the organism of marine fishes. Hydrobiological J 41 (1): 113–126. https://doi.org/10.1615/HydrobJ.v41.il.130
  31. Золотницкая РП (1987) Методы гематологических исследований. Лабораторные методы исследования в клинике (справочник) М. Медицина 106–148. [Zolotnickaya RP (1987) Metody gematologicheskih issledovanij. Laboratornye metody issledovaniya v klinike (spravochnik) [Methods of hematological research. Laboratory research methods in the clinic (reference book)]. M. Medicina. 106–148. (In Russ)].
  32. Tiihonen K, Nikinmaa M (1991) Substrate utilization by carp (Cyprinus carpio) erythrocytes. J Exp Biol 161: 509–551.
  33. Girish V, Vijayalakshmi A (2004). Affordable image analysis using NIH Image/ImageJ. Indian J Cancer 41 (1): 47.
  34. Houchin DN, Munn JI, Parnell BL (1958) A method for the measurement of red cell dimensions and calculation of mean corpuscular volume and surface area. Blood 13 (12): 1185–1191.
  35. Ташкэ К (1980) Введение в количественную цито-гистологическую морфологию. Бухарест: изд-во АНСРР. [Tashke K (1980) Vvedenie v kolichestvennuyu cito-gistologicheskuyu morfologiyu [Introduction to quantitative cyto-histological morphology]. Buharest: izd-vo AN SRR. (In Russ)].
  36. Чижевский АЛ (1959) Структурный анализ движущейся крови. АНСССР. [Chizhevskij AL (1959) Strukturnyj analiz dvizhushchejsya krovi [Structural analysis of moving blood]. AN SSSR. (In Russ)].
  37. Buhariwalla HEC, Osmond EM, Barnes KR, Cozzi RRF, Robertson GN, Marshall WS (2012) Control of ion transport by mitochondrion-rich chloride cells of eurythermic teleost fish: cold shock vs. cold acclimation. Comp Biochem Physiol Part A: Mol Integrat Physiol 162 (3): 234–244. https://doi.org/10.1016/j.cbpa.2012.03.010
  38. Kukhareva TA, Soldatov AA (2016) Functional morphology of blood erythroid cells in Neogobius melanostomus P. during cell differentiation. J Evol Biochem Physiol 52 (3): 261–266. https://doi.org/10.1134/S0022093016030091
  39. Гончарова ЕИ, Пинаев ГП (1988) Белки цитоскелета эритроцитов. Цитология 30 (1): 5–18. [Goncharova EI, Pinaev GP (1988) Belki citoskeleta eritrocitov. Citologiya 30 (1): 5–18. (In Russ)].
  40. Bogusławska D, Machnicka B, Hryniewicz-Jankowska A, Czogalla A (2014) Spectrin and phospholipids – the current picture of their fascinating interplay. Cell Mol Biol Let 19 (1): 158–179. https://doi.org/10.2478/s11658-014-0185-5
  41. Wong P (2004) A hypothesis on the role of the electrical charge of haemoglobin in regulating the erythrocyte shape. Med Hypoth 62 (1): 124–129.
  42. Vera C, Lao J, Hamelberg D, Sung LA (2005) Mapping the tropomyosin isoform 5 binding site on human erythrocyte tropomodulin: further insights into E-Tmod/TM5 interaction. Arch Biochem Biophys 444 (2): 130–138. https://doi.org/10.1016/j.abb.2005.10.002
  43. Soldatov AA (2003) Effects of temperature, pH, and organic phosphates on fish hemoglobins. J Evol Biochem Physiol 39 (2): 159–168.
  44. Jin X, Yue S, Wells KS, Singer VL (1994) Sybr Green (Tm)-1-a new fluorescent dye optimized for detection of picogram amounts of DNA in gels. Biophys J 66 (2): A159–A159.
  45. Said AliK, Ferencz Á, Nemcsók J, Hermesz E (2010) Expressions of heat shock and metallothionein genes in the heart of common carp (Cyprinus carpio): effects of temperature shock and heavy metal exposure. Acta Biol Hungar 61 (1): 10–23. https://doi.org/10.1556/abiol.61.2010.1.2
  46. Ji L, Jiang K, Liu M, Wang B, Han L, Zhang M, Wang L (2016) Low temperature stress on the hematological parameters and HSP gene expression in the turbot Scophthalmus maximus. Chinese J Oceanol Limnol 34 (3): 430–440. https://doi.org/10.1007/s00343-016-4367-z
  47. Hung I, Hsiao YC, Sun HS, Chen TM, Lee SJ (2016) MicroRNAs regulate gene plasticity during cold shock in zebrafish larvae. BMC Genomics17 (1): 1–18. https://doi.org/10.1186/s12864-016-3239-4
  48. Lu Y, Nie M, Wang L, Xiong Y, Wang F, Wang L, You F (2018) Energy response and modulation of AMPK pathway of the olive flounder Paralichthys olivaceus in low-temperature challenged. Aquaculture 484: 205–213. https://doi.org/10.1016/j.aquaculture.2017.11.031
  49. Pinto R, Ivaldi C, Reyes M, Doyen C, Mietton F, Mongelard F, Bouvet P (2005) Seasonal environmental changes regulate the expression of the histone variant macroH2A in an eurythermal fish. FEBS Letters 579 (25): 5553–5558. https://doi.org/10.1016/j.febslet.2005.09.019
  50. Cheng CH, Ye CX, Guo ZX, Wang AL (2017) Immune and physiological responses of pufferfish (Takifugu obscurus) under cold stress. Fish Shellfish Immunol 64: 137–145. https://doi.org/10.1016/j.fsi.2017.03.003

Дополнительные файлы


© Н.Е. Шалагина, А.А. Солдатов, Ю.В. Богданович, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах