MOLECULAR MARKERS PROFILE OF FIBROSIS IN RATS EXPOSED TO DIFFERENT DOSES OF DOXORUBICIN

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Text of the abstract. The study is devoted to the investigate of the molecular markers profile of fibrosis when various doses of doxorubicin are administered to Wistar drain rats. The study was performed on 40 male Wistar rats weighing 260 ± 19 g. Animals were divided into 4 groups: control and three experimental groups with a certain frequency of administration (6 times in two days) and a certain dose of doxorubicin (5, 10, 15 mg/kg, intraperitoneally). At the end of the administration of the chemotherapy drug, the animals were observed for 2 months. To solve this aim, the hearts were taken from anesthetized animals for molecular and morphological studies. Histological, echocardiographic and molecular analyses revealed dose-dependent damaging changes in the left ventricular myocardium against the background of exposure to various doses of doxorubicin. The expression level of TGF-β did not differ from the control values 2 months after the end of administration of all cumulative doses of the chemotherapy drug. However, at this stage of the study, the preserved increased expression of type I, type II collagen, ET-1, FGF4 and TNF-α was characteristic of animals receiving the maximum cumulative dose of doxorubicin, which may reflect the incompleteness of the fibrous tissue formation process, as well as their active participation in the development of inflammatory processes with pronounced cardiotoxic damage against the background of exposure the chemotherapy drug. For animals receiving 10 mg/kg, there were no changes in these molecular markers of fibrosis compared to the control group, whereas in the group of animals with the minimum cumulative dose of the drug, a decrease in the expression of COL I, II type, ET-1, TNF-α and an increase in FGF4 levels were revealed.

Авторлар туралы

E. Podyacheva

Almazov National Medical Research Centre, Ministry of Health of the Russian Federation

Хат алмасуға жауапты Автор.
Email: ekaterinapodyachevaspb@gmail.com
Russian Federation, St. Petersburg

T. Shmakova

Almazov National Medical Research Centre, Ministry of Health of the Russian Federation

Email: ekaterinapodyachevaspb@gmail.com
Russian Federation, St. Petersburg

D. Andreeva

Almazov National Medical Research Centre, Ministry of Health of the Russian Federation

Email: ekaterinapodyachevaspb@gmail.com
Russian Federation, St. Petersburg

R. Toropov

Almazov National Medical Research Centre, Ministry of Health of the Russian Federation

Email: ekaterinapodyachevaspb@gmail.com
Russian Federation, St. Petersburg

Yu. Cheburkin

Almazov National Medical Research Centre, Ministry of Health of the Russian Federation

Email: ekaterinapodyachevaspb@gmail.com
Russian Federation, St. Petersburg

M. Danilchuk

Almazov National Medical Research Centre, Ministry of Health of the Russian Federation

Email: ekaterinapodyachevaspb@gmail.com
Russian Federation, St. Petersburg

S. Osipova

Almazov National Medical Research Centre, Ministry of Health of the Russian Federation

Email: ekaterinapodyachevaspb@gmail.com
Russian Federation, St. Petersburg

M. Martynov

Almazov National Medical Research Centre, Ministry of Health of the Russian Federation

Email: ekaterinapodyachevaspb@gmail.com
Russian Federation, St. Petersburg

Ya. Toropova

Almazov National Medical Research Centre, Ministry of Health of the Russian Federation

Email: ekaterinapodyachevaspb@gmail.com
Russian Federation, St. Petersburg

Әдебиет тізімі

  1. Markham MJ, Wachter K, Agarwal N, Bertagnolli MM, Chang SM, Dale W, Diefenbach CSM, Rodriguez-Galindo C, George DJ, Gilligan TD, Harvey RD, Johnson ML, Kimple RJ, Knoll MA, LoConte N, Maki RG, Meisel JL, Meyerhardt JA, Pennell NA, Rocque GB, Sabel MS, Schilsky RL, Schneider BJ, Tap WD, Uzzo RG, Westin SN (2020) Clinical Cancer Advances 2020: Annual report on progress against cancer from the American Society of Clinical oncology. J Clin Oncol 38: 1081–1101. https://doi.org/10.1200/JCO.19.03141
  2. de Martel C, Georges D, Bray F, Ferlay J, Clifford GM (2020) Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Heal 8: e180–e190. https://doi.org/10.1016/S2214-109X(19)30488-7
  3. Alam SR, Shah ASV, Richards J, Lang NN, Barnes G, Joshi N, MacGillivray T, McKillop G, Mirsadraee S, Payne J, Fox KAA, Henriksen P, Newby DE, Semple SIK (2012) Ultrasmall superparamagnetic particles of iron oxide in patients with acute myocardial infarction early clinical experience. Circ Cardiovasc Imaging 5: 559–565. https://doi.org/10.1161/CIRCIMAGING.112.974907
  4. Oudard S (2013) Progress in emerging therapies for advanced prostate cancer. Cancer Treat Rev 39: 275–289. https://doi.org/10.1016/j.ctrv.2012.09.005
  5. Weingart SN, Zhang L, Sweeney M, Hassett M (2018) Chemotherapy medication errors. Lancet Oncol 19: e191–e199. https://doi.org/10.1016/S1470-2045(18)30094-9
  6. Springfeld C, Jäger D, Büchler MW, Strobel O, Hackert T, Palmer DH, Neoptolemos JP (2019) Chemotherapy for pancreatic cancer. Press Medicale 48: e159–e174. https://doi.org/10.1016/j.lpm.2019.02.025
  7. Knezevic CE, Clarke W (2020) Cancer Chemotherapy: The Case for Therapeutic Drug Monitoring. Ther Drug Monit 42: 6–19. https://doi.org/10.1097/FTD.0000000000000701
  8. Renu K, Abilash VG, Tirupathi TP, Arunachalam S (2018) Molecular mechanism of doxorubicin-induced cardiomyopathy – An update. Eur J Pharmacol 818: 241–253. https://doi.org/10.1016/j.ejphar.2017.10.043
  9. Hole LD, Larsen TH, Fossan KO, Limé F, Schjøtt J (2013) A short-time model to study relevant indices of cardiotoxicity of doxorubicin in the rat. Toxicol Mech Methods 23: 412–418. https://doi.org/10.3109/15376516.2013.773391
  10. Towbin JA, Bowles NE (2002) The failing heart. Nature 415: 227–233. https://doi.org/10.1038/415227a
  11. Харина ВИ, Бережнова ТА, Резникова КМ, Брездынюк АД (2017) Способ выявления начальных кардиотоксических эффектов доксорубицина. Вестн новых мед технологий 4: 165–170. [Kharina VI, Berezhnova TA, Reznikova KM, Brezdynyuk AD (2017) A method for detecting the initial cardiotoxic effects of doxorubicin. Bull New Medic Technol 4: 165–170. (In Russ)]. https://doi.org/10.12737/article_5a32124941da88.60854778
  12. Mawad W, Mertens L, Pagano JJ, Riesenkampff E, Reichert MJE, Mital S, Kantor PF, Greenberg M, Liu P, Nathan PC, Grosse-Wortmann L (2021) Effect of anthracycline therapy on myocardial function and markers of fibrotic remodelling in childhood cancer survivors. Eur Heart J Cardiovasc Imaging 22: 435–442. https://doi.org/10.1093/ehjci/jeaa093
  13. Songbo M, Lang H, Xinyong C, Bin X, Ping Z, Liang S (2019) Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicol Lett 307: 41–48. https://doi.org/10.1016/j.toxlet.2019.02.013
  14. Zhang YJ, Huang H, Liu Y, Kong B, Wang G (2019) MD-1 deficiency accelerates myocardial inflammation and apoptosis in doxorubicin-induced cardiotoxicity by activating the TLR4/MAPKs/nuclear factor kappa B (NF-kB) signaling pathway. Med Sci Monit 25: 7898–7907. https://doi.org/10.12659/MSM.919861
  15. Fu HY, Sanada S, Matsuzaki T, Liao Y, Okuda K, Yama- to M, Tsuchida S, Araki R, Asano Y, Asanuma H, Asa-kura M, French BA, Sakata Y, Kitakaze M, Minamino T (2016) Chemical endoplasmic reticulum chaperone alleviates doxorubicin-induced cardiac dysfunction. Circ Res 118: 798–809. https://doi.org/10.1161/CIRCRESAHA.115.307604
  16. Minotti G, Recalcati S, Mordente A, Liberi G, Calafiore AM, Mancuso C, Preziosi P, Cairo G (1998) The secondary alcohol metabolite of doxorubicin irreversibly inactivates aconitase/iron regulatory protein-1 in cytosolic fractions from human myocardium. FASEB J 12: 541–552. https://doi.org/10.1096/fasebj.12.7.541
  17. Pan JA, Tang Y, Yu JY, Zhang H, Zhang JF, Wang CQ, Gu J (2019) miR-146a attenuates apoptosis and modulates autophagy by targeting TAF9b/P53 pathway in doxorubicin-induced cardiotoxicity. Cell Death Dis 10: 1–15. https://doi.org/10.1038/s41419-019-1901-x
  18. Miklishanskaya SV, Mazur NA, Shestakova NV (2017) Mechanisms for the formation myocardial fibrosis in norm and in certain cardiovascular diseases, how to diagnose it. Russ Med Acad Contin post-graduate Stud 75–81. https://doi.org/10.21518/2079-701X-2017-12-75-81
  19. Aharinejad S, Krenn K, Paulus P, Schäfer R, Zuckermann A, Grimm M, Abraham D (2005) Differential role of TGF-β 1/bFGF and ET-1 in graft fibrosis in heart failure patients. Am J Transplant 5: 2185–2192. https://doi.org/10.1111/j.1600-6143.2005.01006.x
  20. Pan X, Chen Z, Huang R, Yao Y, Ma G (2013) Transforming Growth Factor β1 Induces the Expression of Collagen Type I by DNA Methylation in Cardiac Fibroblasts. PLoS One 8: 1–8. https://doi.org/10.1371/journal.pone.0060335
  21. Murphy SP, Kakkar R, McCarthy CP, Januzzi JL (2020) Inflammation in Heart Failure: JACC State-of-the-Art Review. J Am Coll Cardiol 75: 1324–1340. https://doi.org/10.1016/j.jacc.2020.01.014
  22. Тепляков АТ, Шилов СН, Попова АА, Березикова ЕН, Гракова ЕВ, Неупокоева МН, Копьева КВ, Ратушняк ЕТ, Степачев ЕИ (2020) Роль провоспалительных цитокинов в развитии антрациклин-индуцированной сердечной недостаточности. Клин исследов 35: 66–74. [Teplyakov AT, Shilov SN, Po-pova AA, Berezikova EN, Grakova EV, Neupokoeva MN, Kopeva KV, Ratushnyak ET, Stepachev EI (2020) The role of pro-inflammatory cytokines in the development of anthracycline-induced heart failure. Clinical Studies 35: 66–74. (In Russ)]. https://doi.org/10.29001/2073-8552-2020-35-2-66-74
  23. Zhao W, Wang X, Sun KH, Zhou L (2018) A-Smooth Muscle Actin Is Not a Marker of Fibrogenic Cell Activity in Skeletal Muscle Fibrosis. PLoS One 13: 1–16. https://doi.org/10.1371/journal.pone.0191031
  24. Herrera J, Henke CA, Bitterman PB (2018) Extracellular matrix as a driver of progressive fibrosis. J Clin Invest 128: 45–53. https://doi.org/10.1172/JCI93557
  25. Базылев ВВ, Канаева ТВ (2020) Роль матриксных металлопротеиназ в ремоделировании миокарда. CardioСоматика 11: 22–28. [Bazylev VV, Kanaeva TV (2020) The role of matrix metalloproteinases in myocardial remodeling. CardioSomatics 11: 22–28. (In Russ)]. https://doi.org/10.26442/22217185.2020.3.200374
  26. Ma ZG, Yuan YP, Wu HM, Zhang X, Tang QZ (2018) Cardiac fibrosis: New insights into the pathogenesis. Int J Biol Sci 14: 1645–1657. https://doi.org/10.7150/ijbs.28103
  27. Medeiros-Lima DJM, Carvalho JJ, Tibirica E, Borges JP, Matsuura C (2019) Time course of cardiomyopathy induced by doxorubicin in rats. Pharmacol Rep 71: 583–590. https://doi.org/10.1016/j.pharep.2019.02.013
  28. Lončar-Turukalo T, Vasić M, Tasić T, Mijatović G, Glumac S, Bajić D, Japunžić-Žigon N (2015) Heart rate dynamics in doxorubicin-induced cardiomyopathy. Physiol Meas 36: 727–739. https://doi.org/10.1088/0967-3334/36/4/727
  29. Merlet N, Piriou N, Rozec B, Grabherr A, Lauzier B, Trochu JN, Gauthier C (2013) Increased Beta2-Adrenoceptors in Doxorubicin-Induced Cardiomyopathy in Rat. PLoS One 8: 1–15. https://doi.org/10.1371/journal.pone.0064711
  30. Podyacheva EY, Kushnareva EA, Karpov AA, Toropova YG (2021) Analysis of Models of Doxorubicin-Induced Cardiomyopathy in Rats and Mice. A Modern View From the Perspective of the Pathophysiologist and the Clinician. Front Pharmacol 12: 1–12. https://doi.org/10.3389/fphar.2021.670479
  31. Rolski F, Błyszczuk P (2020) Complexity of TNF-α signaling in heart disease. J Clin Med 9: 1–25. https://doi.org/10.3390/jcm9103267
  32. Sun M, Chen M, Dawood F, Zurawska U, Li JY, Parker T, Kassiri Z, Kirshenbaum LA, Arnold M, Khokha R, Liu PP (2007) Tumor necrosis factor-α mediates cardiac remodeling and ventricular dysfunction after pressure overload state. Circulation 115: 1398–1407. https://doi.org/10.1161/CIRCULATIONAHA.106.643585
  33. Shi-wen X, Kennedy L, Renzoni EA, Bou-Gharios G, Du Bois RM, Black CM, Denton CP, Abraham DJ, Leask A (2007) Endothelin is a downstream mediator of profibrotic responses to transforming growth factor β in human lung fibroblasts. Arthritis Rheum 56: 4189–4194. https://doi.org/10.1002/art.23134
  34. Podyacheva E, Toropova Y (2022) SIRT1 activation and its effect on intercalated disc proteins as a way to reduce doxorubicin cardiotoxicity. Front Pharmacol 13: 1–23. https://doi.org/10.3389/fphar.2022.1035387
  35. Сабиров ЛФ, Фролова ЭБ, Мухаметшина, ГА, Сафаргалиева ЛХ, Мухитова ЭИ (2012) Диллатационная кардиомипатия. Клин случай 5:202–208. [Sabirov LF, Frolova EB, Mukhametshina GA, Safargalieva LKh, Mukhitova EI (2012) Dilated cardiomyopathy. Clinical Case 5: 202–208. (In Russ)]. https://doi.org/10.1016/B978-0-323-47870-0.00022-2
  36. Ahmedova DM, Hojakuliyev BG (2014) Value of Volume Fraction of Collagen in Development of Myocardium Remodeling At the Patients With Inflammatory Cardiomyopathy. Eurasian Hear J 109–112. https://doi.org/10.38109/2225-1685-2014-1-109-112
  37. Найдич АМ (2006) Структурная неоднородность левого желудочка и ремоделирование миокарда. Бюл сибир мед 5: 38–45. [Naiditsch AM (2006) Left ventricular structural heterogeneity and myocardial remodelling. Bull of Siber Med 5: 38–45. (In Russ)]. https://doi.org/10.20538/1682-0363-2006-1-38-45
  38. Shishkova AV, Adonina EV, Duplyakov DV, Suslina EA, Ksenofontova LV (2018) Course and outcome of dilated cardiomyopathy. Cardiol News, Opin Training 6: 92–96. https://doi.org/10.24411/2309-1908-2018-13010
  39. Schiller M, Javelaud D, Mauviel A (2004) TGF-β-induced SMAD signaling and gene regulation: Consequences for extracellular matrix remodeling and wound healing. J Dermatol Sci 35: 83–92. https://doi.org/10.1016/j.jdermsci.2003.12.006
  40. Hafizi S, Wharton J, Chester AH, Yacoub MH (2004) Profibrotic effects of endothelin-1 via the ET A receptor in cultured human cardiac fibroblasts. Cell Physiol Biochem 14: 285–292. https://doi.org/10.1159/000080338
  41. Neri Serneri GG, Cecioni I, Vanni S, Paniccia R, Bandinelli B, Vetere A, Janming X, Bertolozzi I, Boddi M, Lisi GF, Sani G, Modesti PA (2000) Selective upregulation of cardiac endothelin system in patients with ischemic but not idiopathic dilated cardiomyopathy: Endothelin-1 system in the human failing heart. Circ Res 86: 377–385. https://doi.org/10.1161/01.res.86.4.377
  42. Remuzzi G, Perico N, Benigni A (2002) New therapeutics that antagonize endothelin: Promises and frustrations. Nat Rev Drug Discov 1: 986–1001. https://doi.org/10.1038/nrd962
  43. Tanaka R, Umemura M, Narikawa M, Hikichi M, Osaw K, Fujita T, Yokoyama U, Ishigami T, Tamura K, Ishikawa Y (2020) Reactive fibrosis precedes doxorubicin-induced heart failure through sterile inflammation. ESC Hear Fail 7: 588–603. https://doi.org/10.1002/ehf2.12616
  44. Sun KH, Chang Y, Reed NI, Sheppard D (2016) α-smooth muscle actin is an inconsistent marker of fibroblasts responsible for force-dependent TGFβ activation or collagen production across multiple models of organ fibrosis. Am J Physiol - Lung Cell Mol Physiol 310: L824–L836. https://doi.org/10.1152/ajplung.00350.2015

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (1MB)
3.

Жүктеу (58KB)
4.

Жүктеу (74KB)

© Е.Ю. Подъячева, Т.В. Шмакова, Д.Д. Андреева, Р.И. Торопов, Ю.В. Чебуркин, М.С. Данильчук, С.А. Осипова, М.О. Мартынов, Я.Г. Торопова, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>