EFFECT OF DIFFERENT LUTEINIZING HORMONE RECEPTOR AGONISTS ON OVARIAN STEROIDOGENESIS IN MATURE FEMALE RATS

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In clinical practice, ovarian steroidogenesis is stimulated and ovulation is induced using such gonadotropin preparations as human chorionic gonadotropin (hCG) and luteinizing hormone (LH) which, however, have a number of side effects, including a reduction in ovarian sensitivity to endogenous LH and ovarian hyperstimulation syndrome. An alternative to hCG and LH could be allosteric LH/hCG receptor agonists, including the thieno-[2,3-d]-pyrimidine derivative TP03 developed in our laboratory. This work was aimed to study the effect of TP03 (40 μg/kg, i.p.) versus hCG (30 IU/rat, s.c.) on ovarian steroidogenesis in mature female rats in the late proestrus phase, including those treated with the gonadotropin releasing hormone (GnRH) antagonist Orgalutran (100 μg/kg, s.c., 3 h before TP03 or hCG administration). Estradiol, progesterone and LH levels were measured in the blood, while expression levels of the steroidogenesis-related genes Star, Cyp11a1, Hsd3b, Cyp17a1, Hsd17b, Cyp19a1 and LH/hCG receptor gene Lhcgr were assessed in the ovaries. Three hours after administration, TP03 and hCG increased blood progesterone levels and stimulated the expression of genes encoding the cholesterol-transporting protein StAR, cytochrome P450c17 and aromatase (cytochrome P450c19), with this effects detected both in control rats with normal LH levels and in Orgalutran-treated rats with reduced LH levels. The effects of TP03 were comparable to those of hCG, but in contrast to hCG, TP03 did not reduce the activity of the hypothalamic–pituitary–gonadal axis, as indicated by the lack of its influence on blood LH levels and ovarian expression of LH/hCG receptors. Our data indicate the ability of TP03 to effectively stimulate ovarian steroidogenesis, as well as good prospects for the development of TP03-based drugs for controlled ovulation induction.

Авторлар туралы

A. Bakhtyukov

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: alex_shpakov@list.ru
Russia, St. Petersburg

K. Derkach

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: alex_shpakov@list.ru
Russia, St. Petersburg

E. Fokina

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: alex_shpakov@list.ru
Russia, St. Petersburg

I. Lebedev

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: alex_shpakov@list.ru
Russia, St. Petersburg

V. Sorokoumov

Institute of Chemistry, St. Petersburg State University

Email: alex_shpakov@list.ru
Russia, St. Petersburg

L. Bayunova

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: alex_shpakov@list.ru
Russia, St. Petersburg

A. Shpakov

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: alex_shpakov@list.ru
Russia, St. Petersburg

Әдебиет тізімі

  1. Martinez F, Racca A, Rodríguez I, Polyzos NP (2021) Ovarian stimulation for oocyte donation: a systematic review and meta-analysis. Hum Reprod Update 27 (4): 673–696. https://doi.org/10.1093/humupd/dmab008
  2. Namavar Jahromi B, Parsanezhad ME, Shomali Z, Bakhshai P, Alborzi M, Moin Vaziri N, Anvar Z (2018) Ovarian Hyperstimulation Syndrome: A Narrative Review of Its Pathophysiology, Risk Factors, Prevention, Classification, and Management. Iran J Med Sci 43 (3): 248–260. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5993897
  3. Engmann LL, Maslow BS, Kaye LA, Griffin DW, DiLuigi AJ, Schmidt DW, Grow DR, Nulsen JC, Benadiva CA (2019) Low dose human chorionic gonadotropin administration at the time of gonadotropin releasing-hormone agonist trigger versus 35 h later in women at high risk of developing ovarian hyperstimulation syndrome - a prospective randomized double-blind clinical trial. J Ovarian Res 12 (1): 8. https://doi.org/10.1186/s13048-019-0483-7
  4. Jiang X, Dias JA, He X (2014) Structural biology of glycoprotein hormones and their receptors: insights to signaling. Mol Cell Endocrinol 382 (1): 424–451. https://doi.org/10.1016/j.mce.2013.08.021
  5. Casarini L, Simoni M (2021) Recent advances in understanding gonadotropin signaling. Fac Rev 10: 41. https://doi.org/10.12703/r/10-41
  6. Riccetti L, Yvinec R, Klett D, Gallay N, Combarnous Y, Reiter E, Simoni M, Casarini L, Ayoub MA (2017) Human Luteinizing Hormone and Chorionic Gonadotropin Display Biased Agonism at the LH and LH/CG Receptors. Sci Rep 7 (1): 940. https://doi.org/10.1038/s41598-017-01078-8
  7. Segaloff DL, Wang HY, Richards JS (1990) Hormonal regulation of luteinizing hormone/chorionic gonadotropin receptor mRNA in rat ovarian cells during follicular development and luteinization. Mol Endocrinol 4 (12): 1856–1865. https://doi.org/10.1210/mend-4-12-1856
  8. Menon B, Sinden J, Franzo-Romain M, Botta RB, Menon KM (2013) Regulation of LH receptor mRNA binding protein by miR-122 in rat ovaries. Endocrinology 154 (12): 4826–4834. https://doi.org/10.1210/en.2013-1619
  9. Menon B, Gulappa T, Menon KM (2015) miR-122 Regulates LH Receptor Expression by Activating Sterol Response Element Binding Protein in Rat Ovaries. Endocrinology 156 (9): 3370–3380. https://doi.org/10.1210/en.2015-1121
  10. Veldhuis JD, Liu PY, Takahashi PY, Keenan DM (2012) Dynamic testosterone responses to near-physiological LH pulses are determined by the time pattern of prior intravenous LH infusion. Am J Physiol Endocrinol Metab 303 (6): E720–728. https://doi.org/10.1152/ajpendo.00200.2012
  11. Bakhtyukov AA, Derkach KV, Gureev MA, Dar’in DV, Sorokoumov VN, Romanova IV, Morina IY, Stepochkina AM, Shpakov AO (2020) Comparative Study of the Steroidogenic Effects of Human Chorionic Gonadotropin and Thieno[2,3-D]pyrimidine-Based Allosteric Agonist of Luteinizing Hormone Receptor in Young Adult, Aging and Diabetic Male Rats. Int J Mol Sci 21 (20): 7493. https://doi.org/10.3390/ijms21207493
  12. Bakhtyukov AA, Derkach KV, Romanova IV, Sorokoumov VN, Sokolova TV, Govdi AI, Morina IYu, Perminova AA, Shpakov AO (2021) Effect of low-molecular-weight allosteric agonists of the luteinizing hormone receptor on its expression and distribution in rat testes. J Evol Biochem Physiol 57 (2): 208–220. https://doi.org/10.1134/S0022093021020034
  13. Heitman LH, Oosterom J, Bonger KM, Timmers CM, Wiegerinck PH, Ijzerman AP (2008) [3H]Org 43553, the first low-molecular-weight agonistic and allosteric radioligand for the human luteinizing hormone receptor. Mol Pharmacol 73 (2): 518–524. https://doi.org/10.1124/mol.107.039875
  14. van Koppen CJ, Zaman GJ, Timmers CM, Kelder J, Mosselman S, van de Lagemaat R, Smit MJ, Hanssen RG (2008) A signaling-selective, nanomolar potent allosteric low molecular weight agonist for the human luteinizing hormone receptor. Naunyn Schmiedebergs Arch Pharmacol 378 (5): 503–514. https://doi.org/10.1007/s00210-008-0318-3
  15. Nataraja SG, Yu HN, Palmer SS (2015) Discovery and Development of Small Molecule Allosteric Modulators of Glycoprotein Hormone Receptors. Front Endocrinol (Lausanne) 6: 142. https://doi.org/10.3389/fendo.2015.00142
  16. Derkach KV, Dar’in DV, Lobanov PS, Shpakov AO (2014) Intratesticular, intraperitoneal, and oral administration of thienopyrimidine derivatives increases the testosterone level in male rats. Dokl Biol Sci 459: 326–329. https://doi.org/10.1134/S0012496614060040
  17. Bakhtyukov AA, Derkach KV, Sorokoumov VN, Stepochkina AM, Romanova IV, Morina IY, Zakharova IO, Bayunova LV, Shpakov AO (2021) The Effects of Separate and Combined Treatment of Male Rats with Type 2 Diabetes with Metformin and Orthosteric and Allosteric Agonists of Luteinizing Hormone Receptor on Steroidogenesis and Spermatogenesis. Int J Mol Sci 23 (1): 198. https://doi.org/10.3390/ijms23010198
  18. Cora MC, Kooistra L, Travlos G (2015) Vaginal Cytology of the Laboratory Rat and Mouse: Review and Criteria for the Staging of the Estrous Cycle Using Stained Vaginal Smears. Toxicol Pathol 43 (6): 776–793. https://doi.org/10.1177/0192623315570339
  19. Ajayi AF, Akhigbe RE (2020) Staging of the estrous cycle and induction of estrus in experimental rodents: an update. Fertil Res Pract 6: 5. https://doi.org/10.1186/s40738-020-00074-3
  20. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3 (6): 1101–1108. https://doi.org/10.1038/nprot.2008.73
  21. van de Lagemaat R, Timmers CM, Kelder J, van Koppen C, Mosselman S, Hanssen RG (2009) Induction of ovulation by a potent, orally active, low molecular weight agonist (Org 43553) of the luteinizing hormone receptor. Hum Reprod 24 (3): 640–648. https://doi.org/10.1093/humrep/den412
  22. van de Lagemaat R, Raafs BC, van Koppen C, Timmers CM, Mulders SM, Hanssen RG (2011) Prevention of the onset of ovarian hyperstimulation syndrome (OHSS) in the rat after ovulation induction with a low molecular weight agonist of the LH receptor compared with hCG and rec-LH. Endocrinology 152 (11): 4350–4357. https://doi.org/10.1210/en.2011-1077
  23. Gerrits M, Mannaerts B, Kramer H, Addo S, Hanssen R (2013) First evidence of ovulation induced by oral LH agonists in healthy female volunteers of reproductive age. J Clin Endocrinol Metab 98 (4): 1558–1566. https://doi.org/10.1210/jc.2012-3404
  24. Wortmann L, Lindenthal B, Muhn P, Walter A, Nubbemeyer R, Heldmann D, Sobek L, Morandi F, Schrey AK, Moosmayer D, Günther J, Kuhnke J, Koppitz M, Lücking U, Röhn U, Schäfer M, Nowak-Reppel K, Kühne R, Weinmann H, Langer G (2019) Discovery of BAY-298 and BAY-899: Tetrahydro-1,6-naphthyridine-Based, Potent, and Selective Antagonists of the Luteinizing Hormone Receptor Which Reduce Sex Hormone Levels in Vivo. J Med Chem 62 (22): 10321–10341. https://doi.org/10.1021/acs.jmedchem.9b01382
  25. Derkach KV, Dar’in DV, Shpakov AO (2020) Low-Molecular-Weight Ligands of Luteinizing Hormone with the Activity of Antagonists. Biochemistry (Moscow) Suppl Ser A: Membrane and Cell Biology 14 (3): 223–231. https://doi.org/10.1134/S1990747820030034
  26. Broqua P, Riviere PJ, Conn PM, Rivier JE, Aubert ML, Junien JL (2002) Pharmacological profile of a new, potent, and long-acting gonadotropin-releasing hormone antagonist: degarelix. J Pharmacol Exp Ther 301 (1): 95–102. https://doi.org/10.1124/jpet.301.1.95
  27. Weiss JM, König SJ, Polack S, Emons G, Schulz KD, Diedrich K, Ortmann O (2006) Actions of gonadotropin-releasing hormone analogues in pituitary gonadotrophs and their modulation by ovarian steroids. J Steroid Biochem Mol Biol 101 (2–3):118–126. https://doi.org/10.1016/j.jsbmb.2006.06.009
  28. Smith MS, Freeman ME, Neill JD (1975) The control of progesterone secretion during the estrous cycle and early pseudopregnancy in the rat: prolactin, gonadotropin and steroid levels associated with rescue of the corpus luteum of pseudopregnancy. Endocrinology 96 (1): 219–226. https://doi.org/10.1210/endo-96-1-219
  29. Donner NC, Lowry CA (2013) Sex differences in anxiety and emotional behavior. Pflugers Arch 465 (5): 601–626. https://doi.org/10.1007/s00424-013-1271-7
  30. Manna PR, Dyson MT, Stocco DM (2009) Regulation of the steroidogenic acute regulatory protein gene expression: present and future perspectives. Mol Hum Reprod 15 (6): 321–333. https://doi.org/10.1093/molehr/gap025
  31. Shpakov AO, Derkach KV, Dar’in DV, Lobanov PS (2014) Activation of adenylyl cyclase by thienopyrimidine derivatives in rat testes and ovaries. Cell Tissue Biol 8 (5): 400–406. https://doi.org/10.1134/S1990519X14050071
  32. Derkach KV, Dar’in DV, Bakhtyukov AA, Lobanov PS, Shpakov AO (2016) In vitro and in vivo studies of functional activity of new low molecular weight agonists of the luteinizing hormone receptor. Biochemistry (Moscow) Suppl Ser A: Membrane and Cell Biology 10 (4): 294–300. https://doi.org/10.1134/S1990747816030132
  33. Manna PR, Stetson CL, Slominski AT, Pruitt K (2016) Role of the steroidogenic acute regulatory protein in health and disease. Endocrine 51 (1): 7–21. https://doi.org/10.1007/s12020-015-0715-6
  34. Patel SS, Beshay VE, Escobar JC, Carr BR (2010) 17α-Hydroxylase (CYP17) expression and subsequent androstenedione production in the human ovary. Reprod Sci 17 (11): 978–986. https://doi.org/10.1177/1933719110379055
  35. Beshay VE, Havelock JC, Sirianni R, Ye P, Suzuki T, Rainey WE, Carr BR (2007) The mechanism for protein kinase C inhibition of androgen production and 17alpha-hydroxylase expression in a theca cell tumor model. J Clin Endocrinol Metab 92 (12): 4802–4809. https://doi.org/10.1210/jc.2007-1394
  36. Hedin L, Rodgers RJ, Simpson ER, Richards JS (1987) Changes in content of cytochrome P450(17)alpha, cytochrome P450scc, and 3-hydroxy-3-methylglutaryl CoA reductase in developing rat ovarian follicles and corpora lutea: correlation with theca cell steroidogenesis. Biol Reprod 37 (1): 211–223. https://doi.org/10.1095/biolreprod37.1.211
  37. Conley AJ, Howard HJ, Slanger WD, Ford JJ (1994) Steroidogenesis in the preovulatory porcine follicle. Biol Reprod 51 (4): 655–661. https://doi.org/10.1095/biolreprod51.4.655
  38. Peña-Rico M, Guadalupe Ortiz-López M, Camacho-Castillo L, Cárdenas M, Pedraza-Chaverri J, Menjívar M (2006) Steroidogenic impairment due to reduced ovarian transcription of cytochrome P450 side-chain-cleavage (P450scc) and steroidogenic acute regulatory protein (StAR) during experimental nephrotic syndrome. Life Sci 79 (7): 702–708. https://doi.org/10.1016/j.lfs.2006.02.023
  39. Lavoie HA, King SR (2009) Transcriptional regulation of steroidogenic genes: STARD1, CYP11A1 and HSD3B. Exp Biol Med (Maywood) 234 (8): 880–907. https://doi.org/10.3181/0903-MR-97
  40. Lephart ED, Doody KJ, McPhaul MJ, Simpson ER (1992) Inverse relationship between ovarian aromatase cytochrome P450 and 5 alpha-reductase enzyme activities and mRNA levels during the estrous cycle in the rat. J Steroid Biochem Mol Biol 42 (5): 439–447. https://doi.org/10.1016/0960-0760(92)90255-h
  41. Zurvarra FM, Salvetti NR, Mason JI, Velazquez MM, Alfaro NS, Ortega HH (2009) Disruption in the expression and immunolocalisation of steroid receptors and steroidogenic enzymes in letrozole-induced polycystic ovaries in rat. Reprod Fertil Dev 21 (7): 827–839. https://doi.org/10.1071/RD09026

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (29KB)
3.

Жүктеу (44KB)
4.

Жүктеу (41KB)

© А.А. Бахтюков, К.В. Деркач, Е.А. Фокина, И.А. Лебедев, В.Н. Сорокоумов, Л.В. Баюнова, А.О. Шпаков, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>