INTRANASAL INSULIN DECREASES AUTOPHAGIC AND APOPTOTIC DEATH OF NEURONS IN THE RAT HIPPOCAMPAL C1 REGION AND FRONTAL CORTEX UNDER FOREBRAIN ISCHEMIA–REPERFUSION

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The development of approaches to therapy of ischemic brain injuries requires a better insight into the mechanisms that regulate both apoptotic and autophagic death of neurons. Under a strong ischemic (or other pathological) exposure, neurons can die from the activation of both apoptosis and autophagy. This work was aimed to assess the contribution of autophagy and apoptosis activation to neuronal cell death in the hippocampal CA1 region and frontal cortex using the rat two-vessel occlusion/hypotension model of global forebrain ischemia with subsequent long-term reperfusion, as well as to study the ability of intranasal insulin to prevent autophagic and apoptotic death of neurons. The inhibitors of autophagy (3-methyladenine), apoptosis (Ac-DEVD-CHO), or phosphate buffer (for control) were administered to rats intracerebroventricularly before ischemia and reperfusion. To count viable neurons, brain sections were stained with a Nissl stain. During ischemia–reperfusion, the number of viable neurons in the hippocampal CA1 region decreased by 58.3 ± 1.5% of their count in sham-operated rats (control taken as 100%). The administration of autophagy or apoptosis inhibitors increased the number of viable neurons in the hippocampal CA1 region from 58.3 ± 1.5% to 90.4 ± 2.2% (p < 0.001) and 71.6 ± 1.8% (p < 0.001) vs. control, respectively. Intranasal insulin administration at a dose of 0.5 IU (before ischemia and at a daily basis for 7 days during reperfusion) normalized the number of viable neurons in the hippocampal CA1 region up to 100.2 ± 1.95% vs. control. In the frontal cortex, the viability of neurons also decreased under ischemia–reperfusion, while the number of viable neurons increased after the administration of autophagy or apoptosis inhibitors, and even to a greater extent after intranasal insulin administration. The main difference was a lower sensitivity of cortical vs. hippocampal neurons to ischemia–reperfusion. These data indicate that intranasal insulin is able to decrease the death of brain neurons caused by the activation of autophagy and apoptosis due to ischemia–reperfusion.

About the authors

E. A. Fokina

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: avrova@iephb.ru
Russia, St. Petersburg

I. O. Zakharova

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: avrova@iephb.ru
Russia, St. Petersburg

L. V. Bayunova

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: avrova@iephb.ru
Russia, St. Petersburg

D. K. Avrova

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: avrova@iephb.ru
Russia, St. Petersburg

I. O. Ilyasov

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: avrova@iephb.ru
Russia, St. Petersburg

N. F. Avrova

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Author for correspondence.
Email: avrova@iephb.ru
Russia, St. Petersburg

References

  1. Zhou H, Wang J, Jiang J, Stavrovskaya IG, Li M, Li W, Wu Q, Zhang X, Luo C, Zhou S, Sirianni AC, Sarkar S, Kristal BS, Friedlander RM, Wang X (2014) N-acetyl-serotonin offers neuroprotection through inhibiting mitochondrial death pathways and autophagic activation in experimental models of ischemic injury. J Neurosci 34: 2967–2978. https://doi.org/10.1523/JNEUROSCI.1948-13.2014
  2. Wang M, Li Y.-J, Ding Y, Zhang H-N, Sun T, Zhang K, Yang L, Guo Y-Y, Liu S-B, Zhao M-G, Qu Y-M (2016) Silibinin prevents autophagic cell death upon oxidative stress in cortical neurons and cerebral ischemia-reperfusion injury. Mol Neurobiol 53: 932–943. https://doi.org/10.1007/s12035-014-9062-5
  3. Li L, Tian J, Long MK-W, Chen Y, Lu J, Zhou C, Wang T (2016) Protection against experimental stroke by ganglioside GM1 is associated with the inhibition of autophagy. PLoS One 11: e0144219. https://doi.org/10.1371/journal.pone.0144219
  4. Li X, Wang M, Qin C, Fan W-H, Tian D-S, Liu J-L (2017) Fingolimod suppresses neuronal autophagy through the mTOR/p70S6K pathway and alleviates ischemic brain damage in mice. PloS One 12: e0188748. https://doi.org/10.1371/journal.pone.0188748
  5. Nabavi, SF, Sureda A, Sanches-Silva A, Pandima DK, Ahmed T, Shahid M (2019) Novel therapeutic strategies for stroke: the role of autophagy. Critical Rev Clin Lab Sci 56 (3): 182–199. https://doi.org/10.1080/10408363.2019.1575333
  6. Hu Y, Zhou H, Zhang H, Sui Y, Zhang Z, Zou Y, Li K, Zhao Y, Xie J, Zhang L (2022) The neuroprotective effect of dexmedetomidine and its mechanism. Front Pharmacol 13: 965661. eCollection 2022. https://doi.org/10.3389/fphar.2022.965661
  7. Zhang H, Wang X, Chen W, Yang Y, Wang Y, Wan H, Zhu Z (2023) Danhong injection alleviates cerebral ischemia-reperfusion injury by inhibiting autophagy through miRNA-132-3p/ATG12 signal axis. J Ethnopharmacol 300:115724. https://doi.org/10.1016/j.jep.2022.115724
  8. Carloni S, Balduini W (2020) Simvastatin preconditioning confers neuroprotection against hypoxia-ischemia induced brain damage in neonatal rats via autophagy and silent information regulator 1 (SIRT1) activation. Exp Neurol 324: 113117. https://doi.org/10.1016/j.expneurol.2019.113117
  9. Li Q, Zhang T, Wang J, Zhang Z, Yu Zhai Y, Sun X (2014) Rapamycin attenuates mitochondrial dysfunction via activation of mitophagy in experimental ischemic stroke. Biochem Biophys Res Commun 4 (2): 182–188. https://doi.org/10.1016/j.bbrc.2014.01.032
  10. Buckley KM, Hess DL, Sazonova IY, Periyasamy-Thandavan S, John R, Barrett JR, Kirks R, Grace H, Kondrikova G, Johnson MH, Hess DC, Schoenlein PV, Hoda MN, Hill WD (2014) Rapamycin up-regulation of autophagy reduces infarct size and improves outcomes in both permanent MCAL, and embolic MCAO, murine models of stroke. Exp Transl Stroke Med 6: 8. eCollection. https://doi.org/10.1186/2040-7378-6-8
  11. Liu X, Tian F, Wang S, Wang F, Xiong L (2018) Astrocyte Autophagy Flux Protects Neurons Against Oxygen-Glucose Deprivation and Ischemic/Reperfusion Injury. Rejuvenation Res 215: 405–415. https://doi.org/10.1089/rej.2017.1999
  12. Pineda-Ramírez N, Alquisiras-Burgos I, Ortiz-Plata A, Ruiz-Tachiquín M-E, Espinoza-Rojo M, Aguilera P (2020) Resveratrol activates neuronal autophagy ttrough AMPK in the ischemic brain. Mol Neurobiol 57 (2): 1055–1069. https://doi.org/10.1007/s12035-019-01803-6
  13. Луговая АВ, Эмануэль ВС, Артемова АВ, Митрейкин ВФ (2020) Современные подходы к оценке биологических маркеров аутофагии и апоптоза при остром ишемическом инсульте. Соврем пробл науки и обр 4: 159–174. [Lugovaya AV, Emanuel VS, Artemova AV, Mitreikin VF (2020) Modern approaches to the assessment of biological markers of autophagy and apoptosis in acute ischemic stroke. Sovrem probl nauki i obr 4: 159–174. (In Russ)].https://doi.org/10.17513/spno.30017
  14. Kuriakose D, Xiao Z (2020) Pathophysiology and treatment of stroke: Present status and future perspectives. Int J Mol Sci 21 (20): 7609. https://doi.org/10.3390/ijms21207609
  15. Barthels D, Das H (2020) Current advances in ischemic stroke research and therapies. Biochim Biophys Acta. Mol Basis Dis 1866 (4): 165260. https://doi.org/10.1016/j.bbadis.2018.09.012
  16. Campbell BCV, Khatri P (2020) Stroke. Lancet 396 (10244): 149–142. https://doi.org/10.1016/S0140-6736(20)31179-X
  17. He C, Xu Y, Sun J, Li L, Zhang JH, Wang Y (2022) Autphagy and apoptosis in acute brain injuries: From mechanism to treatment. Antioxid Redox Signal. https://doi.org/10.1089/ars.2021.0094
  18. Fan LW, Carter K, Beatt A, Pang Y (2019) Rapid transport of insulin to the brain following intranasal administration in rats. Neural Regen Res 14: 1046–1051. https://doi.org/10.4103/1673-5374.250624
  19. Tashima T (2020) Shortcut approaches to substance delivery into the brain based on intranasal administration using nanodelivery strategies for insulin. Molecules 25 (21): 5188. https://doi.org/10.3390/molecules25215188
  20. Craft S, Claxton A, Baker LD, Hanson AJ, Collerton B, Trittschuh EH, Dahl D, Caulder E, Neth B, Montine TJ, Jung Y, Maldjian J, Whitlow C, Friedman S (2017) Effects of regular and long-acting insulin on cognition and Alzheimer’s disease biomarkers: A pilot clinical trial. J Alzheimers Dis 57: 1325–1334. https://doi.org/10.3233/JAD-161256
  21. Avgerinos KI, Kalaitzidis G, Malli A, Kalaitzoglou D, Myserlis PG, Lioutas VA (2018) Intranasal insulin in Alzheimer’s dementia or mild cognitive impairment. A systematic review. J Neurol 265: 1497–1510. https://doi.org/10.1007/s00415-018-8768-0
  22. Novak P, Maldonado DAP, Novak V (2019) Safety and preliminary efficacy of intranasal insulin for cognitive impairment in Parkinson disease and multiple system atrophy: A double-blinded placebo-controlled pilot study. PLoS One 14: e0214364. https://doi.org/10.1371/journal.pone.0214364
  23. Zorina II, Zakharova IO, Bayunova LV, Avrova NF (2018) Insulin Administration Prevents Accumulation of Conjugated Dienes and Trienes and Inactivation of Na+, K+-ATPase in the Rat Cerebral Cortex during Two-Vessel Forebrain Ischemia and Reperfusion. J Evol Biochem Phys 54:246–249. https://doi.org/10.1134/S0022093018030109
  24. Зорина ИИ, Фокина ЕА, Захарова ИО, Баюнова ЛВ, Шпаков АО (2019) Особенности изменений перекисного окисления липидов и активности Na+, K+-АТФазы у старых крыс в условиях двухсосудистой церебральной ишемии/реперфузии. Успехи геронтологии 32 (6): 941–947. [Zorina II, Fokina EA, Zakharova IO, Bayunova LV, Shpakov AO (2019) Features of the changes in lipid peroxidation and activity of Na+/K+-ATPase in the brain of the aged rats in the conditions of two-vessel cerebral ischemia/reperfusion Adv Gerontol 32 (6):941–947. (In Russ)].
  25. Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Fourth Edition. Acad. Press. San Diego, Calif. USA.
  26. Molchanova SM, Moskvin AN, Zakharova IYu, Yurlova LA, Nosova IYu, Avrova NF (2005) effects of two-vessel forebrain ischemia and of administration of indomethacin and quinacrine on NA+, K+-ATpase activity in various rat brain areas. J Evol Biochem Physiol 41 (1): 39–46.
  27. Sanderson TH, Wider JM (2013) 2-Vessel occlusion/hypotension: A rat model of global brain ischemia. J Vis Exp 76: e50173. https://doi.org/10.3791/50173
  28. Luo T, Liu G, Ma H, Lu B, Xu H, Wang Y, Wu J, Ge P, Liang J (2014) Inhibition of autophagy via activation of PI3K/Akt pathway contributes to the protection of ginsenoside Rb1 against meuronal death caused by ischemic insults. Int J Mol Sci 15 (9): 15426–15442.https://doi.org/10.3390/ijms150915426
  29. Cui D, Wang L, Qi A, Zhou Q, Zhang X, Jiang W. Propofol prevents autophagic cell death following oxygen and glucose deprivation in PC12 cells and cerebral ischemia-reperfusion injury in rats. PLoS One. 2012. 7 (4): e35324. https://doi.org/10.1371/journal.pone.00353241
  30. Wen Y-D, Sheng R, Zhang L-S, Han R, Zhang X, Zhang X-D, Han F, Fukunaga K, Qin Z-H (2008) Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways Autophagy 4 (6): 762–769.https://doi.org/10.4161/auto.6412
  31. Pylova SI, Majkowska J, Hilgier W, Kapuściński A (1989) Rapid decrease of high affinity ouabain binding sites in hippocampal CA1 region following short-term global cerebral ischemia in rat. Albrecht J Brain Res 490 (1): 170–173. https://doi.org/10.1016/0006-8993(89)90446-0
  32. Zhu H, Yoshimoto T, Imajo-Ohmi S, Dazortsava M, Mathivanan A, Yamashima T (2012) Why are hippocampal CA1 neurons vulnerable but motor cortex neurons resistant to transient ischemia? J Neurochem 120 (4): 574–585. https://doi.org/10.1111/j.1471-4159.2011.07550.x
  33. Gong P, Zou Y, Zhang W, Tian Q, Han S, Xu Z, Chen Q, Wang X, Li M (2021) The neuroprotective effects of insulin-like growth factor 1 via the Hippo/YAP signaling pathway are mediated by the PI3K/AKT cascade following cerebral ischemia/reperfusion injury. Brain Res Bul 177: 373–387. https://doi.org/10.1016/j.brainresbull.2021.10.017
  34. Shen H, Gu X, Wei ZZ, Wu A, Liu X, Wei L (2021) Combinatorial intranasal delivery of bone marrow mesenchymal stem cells and insulin-like growth factor-1 improves neurovascularization and functional outcomes following focal cerebral ischemia in mice. Exp Neurol 337: 113542. https://doi.org/10.1016/j.expneurol.2020.113542
  35. Zhang D, Yuan Y, Zhu J, Zhu D, Li C, Cui W, Wang L, Ma S, Duan S, Liu B (2021) Insulin-like growth factor 1 promotes neurological functional recovery after spinal cord injury through inhibition of autophagy via the PI3K/Akt/mTOR signaling pathway. Exp Ther Med 22 (5): 1265. https://doi.org/10.3892/etm.2021.10700
  36. Thiebaut AM, Buendia I, Ginet V, Lemarchand E, Boudjadja MB, Hommet Y, Lebouvier L, Lechevallier C, Maillasson M, Hedou E, Déglon N, Oury F, Rubio M, Montaner J, Puyal J, Vivien D, Roussel BD (2022) Thrombolysis by PLAT/tPA increases serum free IGF1 leading to a decrease of deleterious autophagy following brain ischemia. Autophagy 18 (6): 1297–1317. https://doi.org/10.1080/15548627.2021.1973339
  37. Lioutas VA, Alfaro-Martinez F, Bedoya F, Chung CC, Pimentel DA, Novak V (2015) Intranasal insulin and insulin-like growth factor 1 as neuroprotectants in acute ischemic stroke. Transl Stroke Res 6 (4): 264–275. https://doi.org/10.1007/s12975-015-0409-7
  38. Moller AB, Voss TS, Vendelbo MH, Pedersen SB, Moller N, Jessen N (2018) Insulin inhibits autophagy signaling independent of counter-regulatory hormone levels, but does not affect the effects of exercise. J Appl Physiol 125: 1204–1209. https://doi.org/10.1152/japplphysiol.00490.2018
  39. Ribeiro M, López de Figueroa P, Blanco FJ, Mendes AF, Caramés B (2016) Insulin decreases autophagy and leads to cartilage degradation. Osteoarthritis Cartilage 24: 731–739. https://doi.org/10.1016/j.joca.2015.10.017
  40. Pires KM, Torres NS, Buffolo M, Gunville R, Schaaf C, Davis K, Selzman CH, Gottlieb RA, Boudina S (2019) Suppression of cardiac autophagy by hyperinsulinemia in insulin receptor-deficient hearts is mediated by insulin-like growth factor receptor signaling. Antioxid Redox Signal 31 (6): 444–457. https://doi.org/10.1089/ars.2018.7640
  41. Russo V, Candeloro P, Malara N, Perozziello G, Iannone M, Scicchitano M, Mollace R, Musolino V, Gliozzi M, Carresi C (2019) Key role of cytochrome C for apoptosis detection using Raman microimaging in an animal model of brain ischemia with insulin treatment. Appl Spectrosc 73 (10): 1208–1217. https://doi.org/10.1177/0003702819858671
  42. Zakharova IO, Sokolova TV, Bayunova LV, Zorina II, Rychkova MP, Shpakov AO, Avrova NF (2019) The protective effect of insulin on rat cortical neurons in oxidative stress and its dependence on the modulation of Akt, GSK-3beta, ERK1/2, and AMPK activities. Int J Mol Sci 20 (15): E3702. https://doi.org/10.3390/ijms20153702
  43. Saikia R, Joseph J (2021) AMPK: a key regulator of energy stress and calcium-induced autophagy. J Mol Med (Berl) 99 (11): 1539–1551. https://doi.org/10.1007/s00109-021-02125-8
  44. Minokoshi Y, Alquier T, Furukawa N, Kim YB, Lee A, Xue B, Mu., Foufelle F, Ferré P, Birnbaum MJ, Stuck BJ, Kahn. B. 2004. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 428 (6982): 569–574. https://doi.org/10.1038/nature02440
  45. Valentine RT, Coughlan KA, Ruderman NB, Saha AK (2014) Insulin inhibits AMPK activity and phodphorylatesAMPK Ser 485/491 through Akt in hepatocytes, myotubes and incubated rat skeletal muscle. Arch Biochem Biophys 562: 62–69. https://doi.org/10.1016/j.abb.2014.08.013
  46. Han J, Wang B, Xiao Z, Gao Y, Zhao Y, Zhang J, Chen B, Wang X, Dai J (2008) Mammalian target of rapamycin (mTOR) is involved in the neuronal differentiation of neural progenitors induced by insulin. Mol Cell Neurosci 39 (1): 118–124. https://doi.org/10.1016/j.mcn.2008.06.003

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (2MB)

Copyright (c) 2023 Е.А. Фокина, И.О. Захарова, Л.В. Баюнова, Д.К. Аврова, И.О. Илясов, Н.Ф. Аврова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies