ANALYSIS OF THE COMPOSITION OF OSMOTICALLY ACTIVE PROTEIN FRACTION IN BLOOD SERUM FROM ATLANTIC COD GADUS MORHUA

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A search and identification of osmotically active proteins (OAP) in the composition of blood serum anodic fraction from Atlantic cod Gadus morhua were undertaken using polyacrylamide gel electrophoresis and MALDI mass-spectrometry. 17 OAP have been identified. According to the annotations of Gene Ontology for candidates, 13 OAP were classified as extracellular and 4 OAP- as intracellular proteins. The relative content of OAP in cod serum was ~50% of the total protein. Extracellular proteins apolipoproteins (in the composition of high-density lipoproteins) and hemopexin were dominated in OAP pool. Moreover, the relative content of ApoA-I was ~25% of the total serum protein. Of the intracellular proteins on the serum proteomic map, low molecular weight fragments of the myosin heavy chain were dominated. The results obtained are consistent with the provisions of the “albumin-free” hypothesis of capillary exchange, which considers multiple extracellular and intracellular proteins from different functional classes as osmotically active plasma proteins of “albumin-free” teleost fish.

作者简介

A. Andreeva

Papanin Institute for Biology of Inland Waters RAS

编辑信件的主要联系方式.
Email: aam@ibiw.ru
Russia, Borok, Yaroslavskaya oblast

Z. Bazarova

Papanin Institute for Biology of Inland Waters RAS

Email: aam@ibiw.ru
Russia, Borok, Yaroslavskaya oblast

I. Toropygin

Papanin Institute for Biology of Inland Waters RAS; Orekhovich Research Institute of Biomedical Chemistry, Russian Academy of Medical Sciences

Email: aam@ibiw.ru
Russia, Borok, Yaroslavskaya oblast; Russia, Moscow,

A. Vasiliev

Papanin Institute for Biology of Inland Waters RAS

Email: aam@ibiw.ru
Russia, Borok, Yaroslavskaya oblast

R.A. Fedorov

Papanin Institute for Biology of Inland Waters RAS

Email: aam@ibiw.ru
Russia, Borok, Yaroslavskaya oblast

P. Pavlova

St. Petersburg State University

Email: aam@ibiw.ru
Russia, St. Petersburg

D. Garina

Papanin Institute for Biology of Inland Waters RAS

Email: aam@ibiw.ru
Russia, Borok, Yaroslavskaya oblast

参考

  1. Levitt D, Levitt M (2016) Human serum albumin homeostasis: a new look at the roles of synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum albumin measurements. Int J Gen Med 9: 229–255. https://doi.org/10.2147/IJGM.S102819
  2. Schulz GE, Schirmer RH (1979) Principles of Protein Structure. New York. Springer-Verlag.
  3. Dziegielewska KM, Evans CA, Fossan G., Lorscheider FL, Malinowska DH, Møllgård K, Reynolds ML, Saunders NR, Wilkinson S (1980) Proteins in cerebrospinal fluid and plasma of fetal sheep during development. J Physiol 300: 441–455. https://doi.org/10.1113/jphysiol.1980.sp013171
  4. Majorek KA, Porebski PJ, Dayal A, Zimmerman MD, Jablons- ka K, Stewart AJ, Chruszcz M, Minor W (2012) Structural and immunologic characterization of bovine, horse, andrabbit serum albumins. Mol Immunol 52 (3–4):174–182. https://doi.org/10.1016/j.molimm.2012.05.011
  5. Anguizola J, Matsuda R, Barnaby OS, Hoy KS, Wa C (2013) Review: glycation of human serum albumin. Clin Chim Acta 425: 64–76. https://doi.org/10.1016/j.cca.2013.07.013
  6. Gray JE, Doolittle RF (1992) Characterization, primary structure, and evolution of lamprey plasma albumin. Protein Sci 1 (2): 289–302. https://doi.org/10.1002/pro.5560010211
  7. Byrnes L, Gannon F (1990) Atlantic salmon (Salmo salar) serum albumin: cDNA sequence, evolution, and tissue expression. DNA Cell Biol 9 (9): 647–655. https://doi.org/10.1089/dna.1990.9.647
  8. Metcalf V, Brennan S, Chambers G, George P (1998) The albumins of Chinook salmon (Oncorhynchus tshawytscha) and brown trout (Salmo trutta) appear to lack a propeptide. Arch Biochem Biophys 350 (2): 239–244. https://doi.org/10.1006/abbi.1997.0509
  9. Metcalf VJ, Brennan SO, Chambers GK, George PM (1998) The albumin of the brown trout (Salmo trutta) is a glycoprotein. Biochim Biophys Acta 1386 (1): 90–96.
  10. Xu Y, Ding Z (2005) N-terminal sequence and main characteristics of Atlantic salmon (Salmo salar) albumin. Prep Biochem Biotechnol 35 (4): 283–290. https://doi.org/10.1080/10826060500218081
  11. Li S, Cao Y, Geng F (2017) Genome-wide identification and comparative analysis of albumin family in vertebrates. Evol Bioinf Online 13: 1. https://doi.org/10.1177/1176934317716089
  12. Ballantyne JS (2016) Some of the most interesting things we know, and don’t know, about the biochemistry and physiology of elasmobranch fishes (sharks, skates and rays). Comp Biochem Physiol B Biochem Mol Biol 199: 21–28. https://doi.org/10.1016/j.cbpb.2016.03.005
  13. Andreeva AM (2022) Evolutionary transformations of albumin using the example of model species of jawless Agnatha and bony jawed fish (review). Inland Water Biol 15 (5): 641–658. https://doi.org/10.1134/S1995082922050029
  14. Andreeva AM (2020) Structural organization of plasma proteins as a factor of capillary filtration in Pisces. Inland Water Biol 13 (4): 664–673. https://doi.org/10.1134/S1995082920060036
  15. Michelis R, Sela S, Zeitun T, Geron R, Kristal B (2016) Unexpected normal colloid osmotic pressure in clinical states with low serum albumin. PLoS One 11 (7): e0159839. https://doi.org/10.1371/journal.pone.0159839
  16. Gaal O, Medgyesi GA, Vereczkey L (1980) Electrophoresis in the separation of biological macromolecules. Chichester, John Wiley & Sons, 83–87.
  17. Andreeva AM (2021) Organization and function of osmotically active fraction of fish (Pisces) plasma proteome. Inland Water Biol 14 (4): 449–460. https://doi.org/10.1134/S1995082921040039
  18. Michel CC (1997) Starling: the formulation of his hypothesis ofmicrovascular fluid exchange and its significance after 100 years. Exp Physiol 82: 1–30. https://doi.org/10.1113/expphysiol.1997.sp004000
  19. Weinbaum S (1998) Whitaker distinguished lecture: model tosolve mysteries in biomechanics at the cellular level; a newview of fiber matrix layers. Ann Biomed Eng 26: 627–643. https://doi.org/10.1114/1.134
  20. Adamson RH, Lenz JF, Zhang X., Adamson GN, Weinbaum S, Curry FE (2004) Oncotic pressures opposing filtration across non-fenestrated rat microvessels. J Physiol 557 (3): 889–907. https://doi.org/10.1113/jphysiol.2003.058255
  21. Rosengren BI, Carlsson O, Venturoli D, Rayyes O, Rippe B (2004) Transvascular passage of macromolecules into the peritoneal cavity of normo- and hypothermic rats in vivo: active or passivetransport? J Vasc Res 41: 123–130. https://doi.org/10.1159/000077131
  22. Curry FE, Adamson RH (2012) Endothelial glycocalyx: permeability barrier and mechanosensor. Ann Biomed Eng 40: 828–839. https://doi.org/10.1007/s10439-011-0429-8
  23. Chappell D, Jacob M (2014) Role of the glycocalyx in fluid management: small things matter. Best Pract Res Clin Anaesthesiol 28: 227–234. https://doi.org/10.1016/j.bpa.2014.06.003
  24. Itzhaki RF, Gill DM (1964) A micro-biuret method for estimatingproteins. Anal Biochem 9: 401–410.
  25. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227 (5259): 680–685. https://doi.org/10.1038/227680a0
  26. Kirpichnikov VS (1987) Genetics and selectics of fish. Leningrad. Nauka (In Russ).
  27. Andreeva AM, Lamash NE, Serebryakova MV, Ryabtseva IP, Bolshakov VV (2015) Reorganization of low-molecular-weight fraction of plasma proteins in the annual cycle of Cyprinidae. Biochemistry (Mosc) 80 (2): 208–218. https://doi.org/10.1134/S0006297915020078
  28. Andreeva AM, Serebryakova MV, Lamash N (2017) Oligomeric protein complexes of apolipoproteins stabilize the internal fluid environment of organism in redfins of the Tribolodon genus [Pisces; Cypriniformes, Cyprinidae]. Comp Biochem Physiol D 22:90–97. https://doi.org/10.1016/j.cbd.2017.02.007
  29. Andreeva AM, Vasiliev AS, Toropygin IY, Garina DV, Lamash N, Filippova A (2019) Involvement of apolipoprotein A in maintaining tissue fluid balance in goldfish Carassius auratus. Fish Physiol Biochem 45 (5): 1717–1730. https://doi.org/10.1007/s10695-019-00662-1
  30. Andreeva AM, Toropygin IYu, Garina DV, Lamash NE, Vasiliev AS (2020) The Role of High-Density Lipoproteins in Maintaining Osmotic Homeostasis in the Goldfish Carassius auratus L. (Cyprinidae). J Evol Biochem Physiol 56: 102–112. https://doi.org/10.1134/S0022093020020027
  31. Choudhury M, Yamada S, Komatsu M, Kishimura H, Ando S (2009) Homologue of mammalian apolipoprotein A-II in non-mammalian vertebrates. Acta Biochim Biophys Sin (Shanghai) 41 (5): 370–378. https://doi.org/10.1093/abbs/gmp015
  32. Babin PJ, Vernier JM (1989) Plasma lipoproteins in fish. J Lipid Res 30: 467.
  33. Stoletov K, Fang L, Soo-Ho Choin, Hartvigsen K, Hansen LF, Hall C, Pattison J, Juliano J, Miller ER, Almazan F, Crosier Ph, Witztum J, Klemke R, Miller Yu (2009) Vascular lipid accumulation, lipoprotein oxidation, and macrophage lipid uptake in hypercholesterolemic zebrafish. Circul Res 104: 952–960. https://doi.org/10.1161/CIRCRESAHA.108.189803
  34. Andreeva AM (2019) The strategies of organization of the fishplasma proteome: with and without albumin. Russ J Mar Biol 45 (4): 263–274. https://doi.org/10.1134/S1063074019040023
  35. Saito H, Lund-Katz S, Phillips M (2004) Contributions of domain structure and lipid interaction to the functionality of exchangeable human apolipoproteins. Progress Lipid Res 43 (4): 350–380. https://doi.org/10.1016/j.plipres.2004.05.002
  36. Diaz-Rosales P, Pereiro P, Figueras A, Novoa B, Dios S (2014) The warmtemperature acclimation protein (Wap65) has an important role in the inflammatory response of turbot (Scophthalmus maximus). Fish Shellfish Immunol 41 (1): 80–92. https://doi.org/10.1016/j.fsi.2014.04.012
  37. Sha Z, Peng Xu, Tomokazu T, Hong Liu, Terhune J (2008) The warm temperature acclimation protein Wap65 as an immuneresponse gene: its duplicates are differentially regulated by temperature and bacterial infections. Mol Immunol 45 (5): 1458–1469. https://doi.org/10.1016/j.molimm.2007.08.012
  38. Sarropoulou E, Fernandes JMO, Mitter K, Magoulas A, Mulero V, Sepulcre M, Figueras A, Novoa B (2010) Evolution of a multifunctional gene: the warm temperature acclimation protein Wap65 in the European seabass Dicentrarchus labrax. Mol Phylogen Evolut 55 (2): 640–649. https://doi.org/10.1016/j.ympev.2009.10.001
  39. Cho YS, Kim BS, Kim DS, Nam YK (2012) Modulation of warm-temperature acclimation- associated 65-kDa protein genes (Wap65-1 and Wap65-2) in mud loach (Misgurnus mizolepis, Cypriniformes) liver in response to different stimulatory treatments. Fish Shellfish Immunol 32 (5): 662–669. https://doi.org/10.1016/j.fsi.2012.01.009
  40. Li Ch, Gao Ch, Fu Q, Su B, Chen J (2017) Identification and expression analysis of fetuin B (FETUB) in turbot (Scophthalmus maximus L.) mucosal barriers following bacterial challenge. Fish & Shellfish Immunol 68: 386–394. https://doi.org/10.1016/j.fsi.2017.07.032
  41. Janciauskiene S (2001) Conformational properties of serineproteinase inhibitors (serpins) confer multiple pathophysiological roles. Biochim Biophys Acta 1535 (3): 221. https://doi.org/10.1016/s0925-4439(01)00025-4
  42. Odronitz F, Kollmar M (2007) Drawing the tree of eukaryotic life based on the analysis of 2,269 manually annotated myosins from 328 species. Genome Biol 8 (9): R196.https://doi.org/10.1186/gb-2007-8-9-r196
  43. Poukkula M, Kremneva E, Serlachius M, Lappalainen P (2011) Actin-depolymerizing factor homology domain: a conserved fold performing diverse roles in cytoskeletal dynamics. Cytoskeleton (Hoboken) 68 (9): 471–490. https://doi.org/10.1002/cm.20530
  44. Otis J, Zeituni EM, Thierer JH, Anderson JL, Brown AC, Boehm ED, Cerchione DM, Ceasrine AM, Avraham-David I, Tempelhof H, Yaniv K, Farber SA (2015) Zebrafish as a model for apolipoprotein biology: comprehensive expression analysis and a role for ApoA-IV in regulating food intake. Dis Model Mech 8 (3): 295–309. https://doi.org/10.1242/dmm.018754
  45. Anderson NL, Polanski M, Pieper R, Gatlin T, Tirumalai R, Conrads TP, Veenstra TD, Adkins JN, Pounds JG, Fagan R, Lobley A (2004) The human plasma proteome: a nonredundant list developedby combination of four separate sources. Mol Cell Proteomics 3: 311–326. https://doi.org/10.1074/mcp.M300127-MCP200
  46. Nguyen MK, Kurtz I (2006) Quantitative interrelationship between Gibbs-Donnan equilibrium, osmolality of body fluid compartments, and plasma water sodium concentration. J Appl Physiol 100: 1293–1300. https://doi.org/10.1152/japplphysiol.01274.2005
  47. Olson KR (1992) Blood and extracellular fluid volume regulation: role of the renin-angiotensin system, kallikrein-kinin system, and atrial natriuretic peptides. Fish Physiol 12 (B): 135–234. https://doi.org/10.1016/S1546-5098(08)60010-2
  48. Olson KR, Kinney DW, Dombrowski RA, Duff DW (2003) Transvascular and intravascular fluid transport in the rainbow trout: revisiting Starling’s forces, the secondary circulation and interstitial compliance. J Exp Biol 206 (3): 457–467. https://doi.org/10.1242/jeb.00123
  49. Sarin H (2010) Physiologic upper limits of pore size of differentblood capillary types and another perspective on the dualpore theory of microvascular permeability. J Angiog Res 2 (1): 14. https://doi.org/10.1186/2040-2384-2-14
  50. De Smet H, Blust R, Moens L (1998) Absence of albumin in the plasma of the common carp Cyprinus carpio: binding of fatty acids to high density lipoprotein. Fish Physiol Biochem 19 (1): 71–81.
  51. Chen J, Yu H Shi, Hai Q Hu, He Niu, Ming Y Li (2009) Apolipoprotein A-I, a hyperosmoic adaptation-related protein in ayu (Plecoglossus altivelis). Comp Biochem Physiol B 152: 196–201. https://doi.org/10.1016/j.cbpb.2008.11.005
  52. Andreeva AM., Martemyanov V, Vasiliev AS, Toropygin IYu., Lamash N, Garina DV, Pavlov D (2022) Goldfish as a model for studying the effect of hypernatremia on blood plasma lipoproteins. Bratisl Med J 123 (3): 172–177. https://doi.org/10.4149/BLL_2022_028

补充文件

附件文件
动作
1. JATS XML
2.

下载 (462KB)
3.

下载 (122KB)

版权所有 © А.М. Андреева, З.М. Базарова, И.Ю. Торопыгин, А.С. Васильев, Р.А. Федоров, П.А. Павлова, Д.В. Гарина, 2023

##common.cookie##