CEREBRAL INFORMATION PROCESSING DURING SLEEP: EVOLUTIONARY AND ECOLOGICAL APPROACHES

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Based on the analysis of extensive clinical, psychophysiological and experimental data, the author comes to the conclusion that the widespread idea of the cerebral information processing during sleep related to previous wakefulness and necessary for the formation of long-term memory and other cognitive resources of the brain is inapplicable. This hypothesis does not agree well with a wide range of data regarding both non-REM and REM sleep. The state of the cerebral cortex in non-REM sleep is more adequately described by the classical term “diffuse cortical inhibition.” As for REM sleep, here, too, the very intensive work of the brain does not play any adaptive role (at least for an adult organism) - information is processed, figuratively speaking, “idle”. All the vast experimental and clinical material accumulated in recent decades speaks in favor of the “ecological” hypothesis, which considers sleep as periods of “adaptive inactivity” of the body, increasing its survival in a hostile environment. The function of sleep, perhaps, consists in a radical restructuring of all waking reflexes for the normal course of such periods.

Авторлар туралы

V. Kovalzon

Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences

Email: kovalzon@sevin.ru
Russia, Moscow

Әдебиет тізімі

  1. Brette R (2022) Brains as computers: metaphor, analogy, theory or fact? Front Ecol Evol 10:878729. https://doi.org/10.3389/fevo.2022.878729
  2. Ковальзон ВМ (2011) Основы сомнологии. Физиология и нейрохимия цикла бодрствование-сон. М. Бином. Лаборатория знаний. [Kovalzon VM (2011) Basics of somnology. Physiology and neurochemistry of the sleep-wakefulness cycle. Moscow. BINOM. Laboratory of knowledge. (In Russ).]
  3. Puchkova AN (2020) Studies of learning during sleep: problems, progress, and perspectives. Neurosci Behav Physiol 50 (3): 257–263. https://doi.org/10.1007/s11055-020-00895-1
  4. Steriade M, McCarley RW (2005) Brain Control of Wakefulness and Sleep, 2nd ed. N.Y. Springer. Kluwer. Plenum.
  5. Timofeev I, Chauvette S (2019) Neuronal activity during the sleep-wake cycle. Handbook Sleep Res 30: 3–17. https://doi.org/10.1016/b978-0-12-813743-7.00001-3
  6. Мухаметов ЛМ (1977) Активность клеток головного мозга во время сна. Природа 8: 37–41. [Mukhametov LM (1977) Activity of cerebral cells during sleep. Priroda Issue 8: 37–41]. (In Russ).
  7. Singer W (1977) Control of thalamic transmission by corticofugal and ascending reticular pathways in the visual system. Physiol Rev 57 (3): 386–420.
  8. Eiland MM, Lyamin OI, Siegel JM (2001) State-related discharge of neurons in the brainstem of freely moving box turtles, Terrapene carolina major. Arch Ital de Biol 139 (1–2): 23–36.
  9. Lazarus M, Oishi Y, Bjorness TE and Greene RW (2019) Gating and the need for sleep: dissociable effects of adenosine A1 and A2a receptors. Front Neurosci 13: 740. https://doi.org/10.3389/fnins.2019.00740
  10. Panchin Y, Kovalzon VM (2021) Total wake: natural, pathological, and experimental limits to sleep reduction. Front Neurosci 15: 643496. https://doi.org/10.3389/fnins.2021.643496
  11. Жуве M (2021) Наука о сне. Кто познает тайну сна – познает тайну мозга! М.АСТ. [Russian translation of the book: Jouvet M (2016) Le sommeil, la conscience et l’éveil. Paris:Odile Jacob].
  12. Touzet C (2016) Morvan’s syndrome and the sustained absence of all sleep rhythms for months or years: An hypothesis. Med Hypoth 94: 51–54. https://doi.org/10.1016/j.mehy.2016.06.011
  13. Irani SR, Pettingill P, Kleopa KA, Schiza N, Waters P, Mazia C, Zuliani L, Watanabe O, Lang B, Buckley C, Vincent A (2012) Morvan syndrome: clinical and serological observations in 29 cases. Ann Neuro 72 (2): 241–255. https://doi.org/10.1002/ana.23577
  14. Jones HS, Oswald I (1968) Two cases of healthy insomnia. Electroenceph Clin Neurophysiol 24: 378–380.
  15. Meddis R, Pearson AJD, Langford G (1973) An extreme case of healthy insomnia. Electroenceph Clin Neurophysiol 35: 213–214.
  16. He Y, Jones CR, Fujiki N, Xu Y, Guo B, Holder JLJr, Rossner MJ, Nishino S, Fuet Y-H (2009) The transcriptional repressor DEC2 regulates sleep length in mammals. Science 325: 866–870. https://doi.org/10.1126/science.1174443
  17. Shi G, Yin C, Fan Z, Xing L, Mostovoy Y, Kwok P-Y, Ashbrook LH, Krystal AD, Ptáček LJ, Fu Y-H (2021) Mutations in metabotropic glutamate receptor 1 contribute to natural short sleep trait. Curr Biol 31:13–24. https://doi.org/10.1016/j.cub.2020.09.071
  18. Xing L, Shi G, Mostovoy Y, Gentry NW, Fan Z, McMahon TB, Kwok P-Y, Jones CR, Ptáček LJ, Fu Y-H (2019) Mutant neuropeptide S receptor reduces sleep duration with preserved memory consolidation. Sci Transl Med 11: eaax2014. https://doi.org/10.1126/scitranslmed.aax2014
  19. Gravett N, Bhagwandin A, Sutcliffe R, Landen K, Chase MJ, Lyamin OI, Siegel JM, Manger PR (2017) Inactivity/sleep in two wild free-roaming African elephant matriarchs – Does large body size make elephants the shortest mammalian sleepers? PLoS One 12 (3): e0171903. https://doi.org/10.1371/journal.pone.0171903
  20. Harding CD, Yovel Y, Peirson SN, Hackett TD, Vyazovskiy VV (2022) Re-examining extreme sleep duration in bats: implications for sleep phylogeny, ecology, and function. Sleep 45 (8): zsac064. https://doi.org/10.1093/sleep/zsac064
  21. Siegel JM (2022) Sleep function: an evolutionary perspective. Lancet Neurol 21: 937–946.
  22. Rattenborg NC, Voirin B, Cruz SM, Tisdale R, Dell’Omo G, Lipp H-P, Wikelski M, Vyssotski AL (2016) Evidence that birds sleep in mid-flight. Nat Communicat 7: 12468. https://doi.org/10.1038/ncomms12468
  23. Lesku JA, Rattenborg NC (2014) Avian sleep. Current Biology 24 (1): R12–R14.
  24. Siclari F, Baird B, Perogamvros L, Bernardi G, LaRocque JJ, Riedner B, Boly M, Postle BR, Tononi G (2017) The neural correlates of dreaming. Nat Neurosci 20 (6): 872–878. https://doi.org/10.1038/nn.4545
  25. Пигарев ИН (2013) Висцеральная теория сна. Журнал высшей нервной деятельности 63 (1): 86–104. [Pigarev IN (2013) Visceral theory of sleep. J High Nerv Activ 63 (1): 86–104. (In Russ)]. https://doi.org/10.7868/S0044467713010115
  26. Hobson JA (2005) Sleep is of the brain, by the brain and for the brain. Nature 437 (7063): 1254–1256. https://doi.org/10.1038/nature04283
  27. Dewan EM (1970) The programing (P) hypothesis for REM sleep. Int Psychiatry Clin 7 (2): 295–307.
  28. Mahoney CE, Cogswell A, Koralnik IJ, Scammell TE (2019) The neurobiological basis of narcolepsy. Nat Rev Neurosci 20 (2): 83–93. https://doi.org/10.1038/s41583-018-0097-x
  29. Peever J, Luppi PH, Montplaisir J (2014) Breakdown in REM sleep circuitry underlies REM sleep behavior disorder. Trends Neurosci 37 (5): 279–288. https://doi.org/10.1016/j.tins.2014.02.009
  30. Antelmi E, Rocchi L, Latorre A, Belvisi D, Magrinelli F, Bhatia KP, Tinazzi M (2022) Restless legs syndrome: known knowns and known unknowns. Brain Sci 12: 118. https://doi.org/10.3390/brainsci12010118
  31. Bassetti CL, Bischof M, Valko P (2006) Dreaming: a neurological view. In: Mancia M. Psychoanalysis and Neuroscience, 351–387. Milan. Springer.
  32. Roffwarg HP, Muzio JN, Dement WC (1966) Ontogenetic development of the human sleep-dream cycle. Sci New Series 152 (3722): 604–619.
  33. Crick F, Mitchison G (1983) The function of dream sleep. Nature 304 (5922): 111–114.
  34. Lavie P, Pratt H, Scharf B, Peled R, Brown J (1984) Localized pontine lesion: nearly total absence of REM sleep. Neurology 34: 118–120.
  35. Magidov E, Hayat H, Sharon O, Andelman F, Katzav S, Lavie P, Tauman R, Nir Y (2018) Near-total absence of REM sleep co-occurring with normal cognition: an update of the 1984 paper. Sleep Med 52: 134–137. https://doi.org/10.1016/j.sleep.2018.09.003
  36. Vertes RP, Siegel JM (2005) Time for the sleep community to take a critical look at the purported role of sleep in memory processing. Sleep 28 (10): 1228–1229.
  37. Vertes RP (2004) Memory consolidation in sleep: Dream or reality. Neuron 44: 135–148.
  38. Siegel JM (2001) The REM sleep–memory consolidation hypothesis. Science 294: 1058–1063.
  39. Niwa Y, Kanda GN, Yamada RG, Shi S, Sunagawa GA, Ukai-Tadenuma M, Fujishima H, Matsumoto N, Masumoto K-H, Nagano M, Kasukawa T, Galloway J, Perrin D, Shigeyoshi Y, Ukai H, Kiyonari H, Sumiyama K, Ueda HR (2018) Muscarinic acetylcholine receptors Chrm1 and Chrm3 are essential for REM sleep. Cell Rep 24: 2231–2247. https://doi.org/10.1016/j.celrep.2018.07.082
  40. Yamada RG, Ueda H (2020) Molecular mechanisms of REM sleep. Front Neurosci 13: 1402. https://doi.org/10.3389/fnins.2019.01402
  41. Capellini I, Barton RA, McNamara P, Preston BT, Nunn CL (2008) Phylogenetic analysis of the ecology and evolution of mammalian sleep. Evolution 62 (7): 1764–1776. https://doi.org/10.1111/j.1558-5646.2008.00392.x
  42. Lyamin OI, Kibalnikov AS, Siegel JM (2021) Sleep in ostrich chicks (Struthio camelus). Sleep 44 (5): zsaa259. https://doi.org/10.1093/sleep/zsaa259
  43. Лямин ОИ (2018) Эволюция сна от простых форм до млекопитающих. Эффективная фармакотерапия. Неврология и психиатрия. Спецвыпуск “Сон и его расстройства – 6” 35: 8–16. [Lyamin OI (2018) Evolution of Sleep from Simple Organisms to Mammals. Effectivnaya farmakoterapiya. Nevrologiya i psihiatriya. Spetsvypusk: “Son I ego rasstroistva-6 35: 8–16. (In Russ)].
  44. Mukhametov LM (1988) The absence of paradoxical sleep in dolphins. In: Koella WP, Obal F, Schulz H, Visser P, eds. Sleep’86. P. 154–156. Stuttgart. Gustav Fischer Verlag.
  45. Lyamin OI, Manger PR, Ridgway SH, Mukhametov LM, Siegel JM (2008) Cetacean sleep: An unusual form of mammalian sleep. Neurosci Biobehav Rev 32: 1451–1484. https://doi.org/10.1016/j.neubiorev.2008.05.023
  46. Lyamin OI, Lapierre JL, Mukhametov LM (2013) Sleep in aquatic species. In: Kushida C, ed. The Encyclopedia of Sleep, vol. 1, pp. 57–62. Waltham, MA: Acad Press. https://doi.org/10.1016/B978-0-12-378610-4.00013-9
  47. Мухаметов ЛМ (2017) Начало исследований однополушарного сна морских млекопитающих. Эффективная фармакотерапия. Неврология и психиатрия. Спецвыпуск “Сон и его расстройства – 5” 35: 132–136. [Mukhametov LM (2017) Research Start of Marine Mammals’ Hemisphere Sleep. Effectivnaya farmakoterapiya. Nevrol i Psihiatr Spetsvypusk: “Son I ego rasstroistva-5” 35: 132–136]. (In Russ). https://umedp.ru/upload/iblock/565/Muhametov.pdf
  48. Lyamin OI, Mukhametov LM, Siegel JM (2017) Sleep in the northern fur seal. Current Opin Neurobiol 44: 144–151. https://doi.org/10.1016/j.conb.2017.04.009
  49. Liguori R, Vincent A, Clover L, Avoni P, Plazzi G, Cortelli P, Baruzzi A, Carey T, Gambetti P, Lugaresi E, Montagna P (2001) Morvan’s syndrome: peripheral and central nervous system and cardiac involvement with antibodies to voltage-gated potassium channels. Brain 124 (12): 2417–2426.
  50. Cirelli C (2009) The genetic and molecular regulation of sleep: from fruit flies to humans. Nat Rev Neurosci 10 (8): 549–560. https://doi.org/10.1038/nrn2683
  51. Siegel JM (2009) Sleep viewed as a state of adaptive inactivity. Nat Rev Neurosci 10: 747–753. https://doi.org/10.1038/nrn2697
  52. Foster RG (2018) There is no mystery to sleep. Psyh J 7: 206–208. https://doi.org/10.1002/pchj.247
  53. Rial RV, Nicolau MC, Gamundí A, Akaârir M, Aparicio S, Garau C, Tejada S, Roca C, Gené L, Moranta D, Esteban S (2007) The trivial function of sleep. Sleep Med Rev 11 (4): 311–325. https://doi.org/10.1016/j.smrv.2007.03.001
  54. Rial RV, Canellas F, Akaârir M, Rubiño JA, Barceló P, Martín A, Gamundí A, Nicolau MC (2022) The birth of the mammalian sleep. Biology 11: 734. https://doi.org/10.3390/biology11050734
  55. Frank MG (2021) Challenging sleep homeostasis. Neurobiol Sleep Circad Rhythm 10:100060. https://doi.org/10.1016/j.nbscr.2021.100060
  56. Kovalzon VM, Lyamin OI (2022) In memory of Lev Mukhametov. J Sleep Res 31: e13470. https://doi.org/10.1111/jsr.13470
  57. Rodionova EI, Kastner S, Krueger JM, Saalmann Y.B., Lüthi A, Nobili L, Kovalzon VM, Vyazovskiy VV (2022) In memoriam: Professor Ivan Pigarev (1941–2021). J Sleep Res 31: e13492. https://doi.org/10.1111/jsr.13492

© В.М. Ковальзон, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>