LYMPHATIC DRAINAGE SYSTEM OF THE BRAIN: A NEW PLAYER IN NEUROSCIENCE

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The lymphatic system not only plays an important role as a drainage eliminating metabolic wastes and toxins from tissues, but also represents an arena for the unfolding of immune response scenarios aimed at protecting the organism from bacteria and viruses. In the central nervous system (CNS), drainage processes proceed with the same intensity as in peripheral tissues. The brain actively exchanges nutrients with the blood and excretes metabolic waste products through the drainage paths closely related to the peripheral lymphatic system. The same routes allow the traffic of immune cells and antibodies to the CNS, thus providing a communication between the peripheral and central immune systems. Over the two-century history of brain drainage studies, a lot of facts have been accumulated to suggest indirectly the presence of lymphatic vessels in the CNS. However, even with the advent of high-tech imaging of brain structures and a rediscovery of the meningeal lymphatic vessels (MLVs), which was a watershed in neuroscience, scientists have not advanced beyond4 confirming the already existing dogma that the lymphatic network is present exclusively in the brain meninges, but not in brain tissues. In fact, however, the rediscovery of MLVs by American scientists was not a “true revelation”, as they were first described by the Italian anatomist Mascagni two centuries earlier, and his results were confirmed later on in many other studies performed on the meninges in humans, macaques, rodents, dogs, rabbits and zebrafish. As a result, the scientific community did not recognize the “forgotten” MLVs as a new discovery. This review highlights the turning points that occurred in neuroscience, when a new player has entered the game and set in order bicentennial efforts of scientists to explain how unnecessary molecules and toxins are removed from the brain, as well as how drainage and immunity are implemented in the CNS. This is an important informational and creative platform both for new fundamental knowledge about the lymphatic system in the brain, as well as for the development of innovative neurorehabilitation technologies based on the management of lymphatic drainage processes.

About the authors

O. V. Semyachkina-Glushkovskaya

Saratov State Univerity

Author for correspondence.
Email: glushkovskaya@mail.ru
Russia, Saratov

D. E. Postnov

Saratov State Univerity

Email: glushkovskaya@mail.ru
Russia, Saratov

A. P. Khorovodov

Saratov State Univerity

Email: glushkovskaya@mail.ru
Russia, Saratov

N. A. Navolokin

Saratov State Univerity

Email: glushkovskaya@mail.ru
Russia, Saratov

Yu. G. G. Kurthz

Saratov State Univerity; Humboldt University of Berlin; Potsdam Institute for the Study of Climate Change

Email: glushkovskaya@mail.ru
Russia, Saratov; Germany, Berlin; Germany, Potsdam

References

  1. Davson D, Welch K, Segal MB (1987) Physiology and Pathophysiology of the Cerebrospinal Fluid. Churchill Livingstone. Edinburgh.
  2. Bergsteiner M (2001) Evolving concepts of cerebrospinal fluid. Neurosurg Clin N Am 36: 631–638.
  3. Abbott NJ (2004) Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int 45: 545–552. https://doi.org/10.1016/j.neuint.2003.11.006
  4. Rapoport S (1976) Blood–brain Barrier in Physiology and Medicine. Raven Press. New York.
  5. Schwalbe G (1869) Der Arachnoidalraum ein Lymphraum und sein Zusammenhang mit dem Perichorioidalraum. Zentralbl Med Wiss 7: 465–467.
  6. Quincke H (1872) Zur physiologie der cerebrospinal flussigkeit. Arch Anat Physiol. Leipzig.
  7. Key A, Retzius G (1875) Studien In DerAnatomie Des Nervensystems Und Des Bindegewebes I and II. Stockholm. Samson & Wallin 1.
  8. Foldi M, Gellert A, Kozma M, Poberai M, Zoltan OT, Csanda E (1966) New contributions to the anatomical connections of the brain and the lymphatic system. Acta Anat (Basel) 64: 498–505.
  9. Courtice FC, Simmonds WJ (1951) The removal of protein from the subarachnoid space. Aust J Exp Biol Med Sci 29: 255–263. https://doi.org/10.1038/icb.1951.30
  10. Simmonds WJ (1953) The Absorption of Labeled Erythrocytes from the Subarachnoid Space in Rabbits. Autral J Exp Biol Med Sci 31: 77. https://doi.org/10.1038/icb.1953.10
  11. Brinker T, Baer M, Foldi M (1994) Manual Lymphatic Drainage of the Head and the Neck for Treatment of Increase Intracranial Pressure. Progress In Lymphol XIV, Witte MN, Witte CL (eds). Lymphology 27 (Suppl): 614–617.
  12. Caversaccio M, Peschel O, Arnold W (1996) The Drainage of the Cerebrospinal Fluid into the Lymphatic System Neck in Humans:' ORL 58: 164–166. https://doi.org/10.1159/000276818
  13. McComb GJ, Hyman S, Weiss MH (1984) Lymphatic drainage of cerebrospinal fluid in the cat. In: Hydrocephalus, New York. Raven Press. 83–97.
  14. Hasuo M, Asano Y, Teraoka M, Ikeyama A, Kageyama N (1981) Cerebrospinal fluid absorption into lymphatic system in condition of increased intracranial pressure. No To Shinkei 33: 673–678.
  15. McComb JG, Davson H, Hyman S, Weiss MH (1982) Cerebrospinal fluid drainage as influenced by ventricular pressure in the rabbit. J Neurosurg 56: 790–797. https://doi.org/10.3171/jns.1982.56.6.0790
  16. Naruse I, Ueta E (2002) Hydrocephalus manifestation in the genetic polydactyly/ arhinencephaly mouse (Pdn/Pdn). Congenit Anom (Kyoto) 42: 27–31. https://doi.org/10.1111/j.1741-4520.2002.tb00851.x
  17. Smith DR, Hardman JM, Earle KM (1969) Metastasizing Neuroectodermal Tumors of the Central Nervous System. Neurosurgery 31: 50–58.
  18. McComb JG (1983) Recent Research into the Nature of Cerebrospinal Fluid Formation and Absorption. J Neurosurg 59: 369–383. https://doi.org/10.3171/jns.1983.59.3.0369
  19. Koh L, Zakharov A, Johnston M (2005) Integration of the subarachnoid space and lymphatics: Is it time to embrace a new concept of cerebrospinal fluid absorption? Cerebrospin Fluid Res 2: 6. https://doi.org/10.1186/1743-8454-2-6
  20. Jackson RT, Tigges J, Arnold W (1979) Subarachnoid Space of the CNS, Nasal Mucosa and Lymphatic System. Arch Otolaryngol 105: 180–184. https://doi.org/10.1001/archotol.1979.00790160014003
  21. Si J, Chen L, Xia Z (2006) Effects of cervical-lymphatic blockade on brain edema and infarction volume in cerebral ischemic rats. Chin J Physiol 49: 258–265.
  22. Radjavi A, Smirnov I, Derecki N, Kipnis J (2014) Dynamics of the meningeal CD4+ T-cell repertoire are defined by the cervical lymph nodes and facilitate cognitive task performance in mice. Mol Psychiatry 19: 531–532. https://doi.org/10.1038/mp.2013.79
  23. Xing C, Lu X, Wei S, Wang J, Xiang D (1994) The effect of blocking the cervical lymphatic drainage of rabbit on its cerebral structure and function in the acute lymphostasis stage. In: Progress in Lymphology XIV. Int Soc Lymphol. Zurich. Switzerland 742–746.
  24. Lohrberg M, Wilting J (2016) The lymphatic vascular system of the mouse head. Cell Tissue Res 366: 667–677. https://doi.org/10.1007/s00441-016-2493-8
  25. Ma Q, Ineichen BV, Detmar M, Proulx ST (2017) Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. Nat Commun 8 (1): 1434. https://doi.org/10.1038/s41467-017-01484-6
  26. Cserr HF (1984) Convection of Brain Interstitial Fluid Hydrocephalus. NY. Raven Press.
  27. Kida S, Pantazis A, Weller R (1993) CSF drains directly from the subarachnoid space into lymphatics in the rat brain. Anatomy, histology and immunological significance. Neuropathol Appl Neurobiol 18: 480–488. https://doi.org/10.1111/j.1365-2990.1993.tb00476.x
  28. Butler A (1984) Correlated Physiologic and Structural Studies of CSF Absorption Hydrocephalus. NY. Raven Press.
  29. Brinker T, Ludemann W, Berens von Rautenfeld D, Samii M (1997) Dynamic Properties of Lymphatic Pathways for the Absorption of Cerebrospinal Fluid. Acta Neuropathol 94: 493–498. https://doi.org/10.1007/s004010050738
  30. Johnson M, Papaiconomou C (2002) Cerebrospinal fluid transport: a lymphatic perspective. News Physiol Sci 17: 227–230. https://doi.org/10.1152/nips.01400.2002
  31. Papaiconomou C, Bozanovic-Sosic R, Zakharov A, Johmson M (2002) Does neonatal cerebrospinal fluid occur via arachnoid projections or extrancranial lymphatics? Am J Physiol Integr Comp Physiol 283: R869–R876. https://doi.org/10.1152/ajpregu.00173.2002
  32. Semyachkina-Glushkovskaya O, Postnov D, Kurths J (2018) Blood−Brain Barrier, Lymphatic Clearance, and Recovery: Ariadne’s Thread in Labyrinths of Hypotheses. Int J Mol Sci 19 (12): 3818. https://doi.org/10.3390/ijms19123818
  33. Sokołowski W, Barszcz K, Kupczyńska M, Czubaj N, Skibniewski M, Purzyc H (2018) Lymphatic drainage of cerebrospinal fluid in mammals - are arachnoid granulations the main route of cerebrospinal fluid outflow? Biologia (Bratisl) 73 (6): 563–568. https://doi.org/10.2478/s11756-018-0074-x
  34. Proulx ST (2021) Cerebrospinal fluid outflow: a review of the historical and contemporary evidence for arachnoid villi, perineural routes, and dural lymphatics. Cell Mol Life Sci 78 (6): 2429–2457. https://doi.org/10.1007/s00018-020-03706-5
  35. Bakker ENTP, Naessens DMP, VanBavel EB (2019) Paravascular spaces: entry to or exit from the brain? Exp Physiol 104 (7): 1013–1017. https://doi.org/10.1113/EP087424
  36. Dupont G, Schmidt C, Yilmaz E, Oskouian RJ, Macchi V, de Caro R, Tubbs RS (2019) Our current understanding of the lymphatics of the brain and spinal cord. Clin Anat 32 (1): 117–121. https://doi.org/10.1002/ca.23308
  37. Da Mesquita S, Fu Z, Kipnis J (2018) The Meningeal Lymphatic System: A New Player in Neurophysiology. Neuron 100 (2): 375–388. https://doi.org/10.1016/j.neuron.2018.09.022
  38. Hladky SB, Barrand MA (2022) The glymphatic hypothesis: the theory and the evidence. Fluids Barriers CNS 19: 9. https://doi.org/10.1186/s12987-021-00282-z
  39. Weller RO, Galea I, Carare RO, Minagar A (2010) Pathophysiology of the lymphatic drainage of the central nervous system: Implications for pathogenesis and therapy of multiple sclerosis. Pathophysiology 17: 295–306. https://doi.org/10.1016/j.pathophys.2009.10.007
  40. Louveau A, Smirnov I, Keyes T, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS, Harris TH, Kipnis J (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523: 337–341. https://doi.org/10.1038/nature14432
  41. Da Mesquita S, Louveau, A, Vaccari A, Smirnov I, Cornelison CR, Kingsmore KM, Contarino C, Onengut-Gumuscu S, Farber E, Raper D, Viar KE, Powell RD, Baker W, Dabhi N, Bai R, Cao R, Hu S, Rich SS, Munson JM, Lopes MB, Overall CC, Acton ST, Kipnis J (2018) Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature 560: 185–191. https://doi.org/10.1038/s41586-018-0368-8
  42. Hu X, Deng Q, Ma L, Li Q, Chen Y, Liao Y, Zhou F, Zhang C, Shao L, Feng J, He T, Ning W, Kong Y, Huo Y, He A, Liu B, Zhang J, Adams R, He Y, Tang F, Bian X, Luo J (2020) Meningeal lymphatic vessels regulate brain tumor drainage and immunity. Cell Res 30 (3): 229–243. https://doi.org/10.1038/s41422-020-0287-8
  43. Chen J, Wang L, Xu H, Xing L, Zhuang Z, Zheng Y, Li X, Wang C, Chen S, Guo Z, Liang Q, Wang Y (2020) Meningeal lymphatics clear erythrocytes that arise from subarachnoid hemorrhage. Nat Commun 11: 3159. https://doi.org/10.1038/s41467-020-16851-z
  44. Liu X, Gao C, Yuan, J. Xiang T, Gong Z, Luo H, Jiang W, Song Y, Huang J, Quan W, Wang D, Tian Y, Ge X, Lei P, Zhang J, Jiang R (2020) Subdural haematomas drain into the extracranial lymphatic system through the meningeal lymphatic vessels. Acta Neuropathol Commun 8: 16. https://doi.org/10.1186/s40478-020-0888-y
  45. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 4 (147): 147ra111. https://doi.org/10.1126/scitranslmed.3003748
  46. Jessen NA, Munk AS, Lundgaard I, Nedergaard M (2015) The Glymphatic System: A Beginner’s Guide. Neurochem Res 40 (12): 2583–2599. https://doi.org/10.1007/s11064-015-1581-6
  47. Smith AJ, Jin BJ, Verkman AS (2015) Muddying the water in brain edema? Trends Neurosci 38 (6): 331–332. https://doi.org/10.1016/j.tins.2015.04.006
  48. Nikolenko VN, Oganesyan MV, Yakhno NN, Orlov EA, Porubaeva EE, Popova EYu (2018) Glymphatic system of the brain: functional anatomy and clinical perspectives. Neurol Neuropsych Psychosomat 10 (4): 94–100.
  49. Nikolenko VN, Nikitina AT, Sozonova EA, Pavliv MP, Oganesyan MV, Rizaeva NA (2021) Morphology, mechanisms of regulation and the role of the drainage systems of the CNS in the metabolism of brain tissues. In: Lymphology: from basic research to medical technology. Proc XIV Int Sci Pract Confer. Novosibirsk 20–25.
  50. Bradbury MW, Cserr HF, Westrop RJ (1981) Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am J Physiol 240: F329–F336. https://doi.org/10.1152/ajprenal.1981.240.4.F329
  51. Ma Q, Ries M, Decker Y, Müller A, Riner C, Bücker A, Fassbender K, Detmar M, Proulx ST (2019) Rapid lymphatic efflux limits cerebrospinal fluid flow to the brain. Acta Neuropathol 137: 151–165.https://doi.org/10.1007/s00401-018-1916-x
  52. Min Rivas F, Liu J, Martell BC, Du T, Mestre H, Nedergaard M, Tithof J, Thomas JH, Kelley DH (2020) Surface periarterial spaces of the mouse brain are open, not porous. J R Soc Interface 17 (172): 20200593. https://doi.org/10.1098/rsif.2020.0593
  53. Cserr HF, Depasquale M, Patlak CS (1987) Regulation of brain water and electrolytes during acute hyperosmolality in rats. Am J Physiol 253: F522–F529. https://doi.org/10.1152/ajprenal.1987.253.3.F522
  54. Abbott NJ, Pizzo ME, Preston JE, Janigro D, Thorne RG (2018) The role of brain barriers in fluid movement in the CNS: is there a “glymphatic” system? Acta Neuropathol 135 (3): 387–407. https://doi.org/10.1007/s00401-018-1812-4
  55. Rasmussen MK, Mestre H, Nedergaard M (2021) Fluid transport in the brain. Physiol Rev 3: 66. https://doi.org/10.1152/physrev.00031.2020
  56. Schley D, Carare-Nnadi R, Please CP, Perry VH, Weller RO (2006) Mechanisms to explain the reverse perivascular transport of solutes out of the brain. J Theoret Biol 238: 962–974. https://doi.org/10.1016/j.jtbi.2005.07.005
  57. Rennels ML, Blaumanis OR, Grady PA (1990) Rapid solute transport throughout the brain via paravascular fuid pathways. Adv Neurol 52:431–439.
  58. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J, Christensen DJ, Nicholson C, Ilif JJ, Takano A, Deane R, Nedergaard M (2013) Sleep drives metabolite clearance from the adult brain. Science 342: 373–377. https://doi.org/10.1126/science.1241224
  59. Iliff JJ, Lee H, Yu M, Feng T, Logan J, Nedergaard M, Benveniste H (2013) Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest 123 (3): 1299–1309. https://doi.org/10.1172/JCI67677
  60. Iliff JJ, Wang M, Zeppenfeld DM, Venkataraman A, Plog BA, Liao Y, Deane R, Nedergaard M (2013) Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J Neurosci 33 (46): 18190–18199. https://doi.org/10.1523/JNEUROSCI.1592-13.2013
  61. Bedussi B, Almasian M, de Vos J, VanBavel E, Bak- ker ENTP (2018) Paravascular spaces at the brain surface: Low resistance pathways for cerebrospinal fuid fow. J Cereb Blood Flow Metab 38: 719–726. https://doi.org/10.1177/0271678X17737984
  62. Mestre H, Tithof J, Du T, Song W, Peng W, Sweeney AM, Olveda G, Thomas JH, Nedergaard M, Kelley DH (2018) Flow of cerebrospinal fuid is driven by arterial pulsations and is reduced in hypertension. Nat Commun 9: 4878. https://doi.org/10.1038/s41467-018-07318-3
  63. Raghunandan A, Ladrón-de-Guevara A, Tithof J, Mestre H, Nedergaard M, Thomas JH, Kelley DH (2020) Bulk fow of cerebrospinal fuid observed in periarterial spaces is not an artifact of injection. Elife 10: e65958. https://doi.org/10.7554/eLife.65958
  64. Koundal S, Elkin R, Nadeem S, Xue Y, Constantinou S, Sanggaard S, Liu X, Monte B, Xu F, Van Nostrand W, Nedergaard M, Lee H, Wardlaw J, Benveniste H, Tannenbaum A (2020) Optimal mass transport with Lagrangian workfow reveals advective and difusion driven solute transport in the glymphatic system. Sci Rep 10 (1): 1–18. https://doi.org/10.1038/s41598-020-59045-9
  65. Xue Y, Liu X, Koundal S, Constantinou S, Dai F, Santambrogio L, Lee H, Benveniste H (2020) In vivo T1 mapping for quantifying glymphatic system transport and cervical lymph node drainage. Sci Rep 10: 14592. https://doi.org/10.1038/s41598-020-71582-x
  66. Diem AK, Sharp MM, Gatherer M, Bresslof NW, Carare RO, Richardson G (2017) Arterial pulsations cannot drive intramural periarterial drainage: Signifcance for Aβ drainage. Front Neurosci 11: 475. https://doi.org/10.3389/fnins.2017.00475
  67. Asgari M, de Zélicourt DA, Kurtcuoglu V (2016) Glymphatic solute transport does not require bulk fow. Sci Rep 6: 38635. https://doi.org/10.1038/srep38635
  68. Wagshul ME, Eide PK, Madsen JR (2011) The pulsating brain: a review of experimental and clinical studies of intracranial pulsatility. Fluids and Barriers CNS 8 (1): 1–23. https://doi.org/10.1186/2045-8118-8-5
  69. Butler WE (2017) Wavelet brain angiography suggests arteriovenous pulse wave phase locking. PloS One 12 (11): e0187014. https://doi.org/10.1371/journal.pone.0187014
  70. Postnov D, Erdener SE, Kilic K, Boas DA (2018) Cardiac pulsatility mapping and vessel type identification using laser speckle contrast imaging. Biomed Optics Express 9 (12): 6388–6397. https://doi.org/10.1364/BOE.9.006388
  71. Kiviniemi V, Wang X, Korhonen V, Keinanen T, Tuovinen T, Autio J, LeVan P, Keilholz S, Zang Y-F, Hennig J, Nedergaard M (2016) Ultra-fast magnetic resonance encephalography of physiological brain activity – Glymphatic pulsation mechanisms? J Cereb Blood Flow Metab 36: 1033–1045. https://doi.org/10.1177/0271678X15622047
  72. Vinje V, Ringstad G, Lindstrøm EK, Valnes LM, Rognes ME, Eide PK, Mardal KA (2019) Respiratory influence on cerebrospinal fluid flow–a computational study based on long-term intracranial pressure measurements. Scient Rep 9 (1): 1–13. https://doi.org/10.1038/s41598-019-46055-5
  73. Fultz NE, Bonmassar G, Setsompop K, Stickgold RA, Rosen BR, Polimeni JR, Lewis LD (2019) Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science 366 (6465): 628–631. https://doi.org/10.1126/science.aax5440
  74. Brierley JB (1950) The penetration of particulate matter from the cerebrospinal fuid into the spinal ganglia, peripheral nerves, and perivascular spaces of the central nervous system. J Neurol Neurosurg Psychiatry 13: 203–215. https://doi.org/10.1136/jnnp.13.3.203
  75. Smith A, Akdemir G, Wadhwa M, Song D, Verkman A (2021) Application of fluorescent dextrans to the brain surface under constant pressure reveals AQP4-independent solute uptake. J Gen Physiol 153: e202112898. https://doi.org/10.1085/jgp.202112898
  76. Wang P, Olbricht WL (2011) Fluid mechanics in the perivascular space. J Theoret Biol 274: 52–57. https://doi.org/10.1016/j.jtbi.2011.01.014
  77. Kedarasetti RT, Drew PJ, Costanzo F (2020) Arterial pulsations drive oscillatory flow of CSF but not directional pumping. Sci Rep 10: 10102. https://doi.org/10.1038/s41598-020-66887-w
  78. Thomas J (2019) Fluid dynamics of cerebrospinal fluid flow in perivascular spaces. J R Soc Interface 16: 20190572. https://doi.org/10.1098/rsif.2019.0572
  79. Martinac AD, Bilston LE (2019) Computational modelling of fluid and solute transport in the brain. Biomech Modeling Mechanobiol 19: 781–800. https://doi.org/10.1007/s10237-019-01253-y
  80. Faghih MM, Keith SM (2021) Mechanisms of tracer transport in cerebral perivascular spaces. J Biomech 118: 110278. https://doi.org/10.1016/j.jbiomech.2021.110278
  81. Postnov DE, Postnikov EB, Karavaev AS, Glushkovskaya-Semyachkina OV (2018) On trans-parenchymal transport after blood brain barrier opening: pump-diffuse-pump hypothesis. Saratov Fall Meeting 2017: Laser Physics and Photonics XVIII. Computational Biophysics and Analysis of Biomedical Data IV. Int Soc Optics and Photonics 10717: 107171W. https://doi.org/10.1117/12.2315196
  82. Sharp MK, Carare RO, Martin BA (2019) Dispersion in porous media in oscillatory flow between flat plates: applications to intrathecal, periarterial and paraarterial solute transport in the central nervous system. Fluids Barriers CNS 16: 13. https://doi.org/10.1186/s12987-019-0132-y
  83. Troyetsky DE, Tithof J, Thomas JH, Kelley DH (2021) Dispersion as a waste-clearance mechanism in flow through penetrating perivascular spaces in the brain. Sci Rep 11: 4595. https://doi.org/10.1038/s41598-021-83951-1
  84. Wang MX, Ray L, Tanaka KF, Iliff JJ, Heys J (2021) Varying perivascular astroglial endfoot dimensions along the vascular tree maintain perivascular-interstitial flux through the cortical mantle. Glia 69: 715–728. https://doi.org/10.1002/glia.23923
  85. Mestre H, Hablitz LM, Xavier AL, Feng W, Zou W, Pu T, Monai H, Murlidharan G, Castellanos Rivera RM, Simon MJ, Pike MM, Plá V, Du T, Kress BT, Wang X, Plog BA, Thrane AS, Lundgaard I, Abe Y, Yasui M, Thomas JH, Xiao M, Hirase H, Asokan A, Iliff JJ, Nedergaard M (2018) Aquaporin-4-dependent glymphatic solute transport in the rodent brain. ELife 7: e40070. https://doi.org/10.7554/eLife.40070
  86. Smith AJ, Yao X, Dix JA, Jin B-J, Verkman AS (2017) Test of the ‘glymphatic’ hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma. ELife 6: e27679. https://doi.org/10.7554/eLife.27679
  87. Smith AJ, Verkman AS (2018) The “glymphatic” mechanism for solute clearance in Alzheimer’s disease: game changer or unproven speculation? FASEB J 32: 543–551. https://doi.org/10.1096/fj.201700999
  88. Smith AJ, Verkman AS (2019) Cross Talk opposing view: Going against the flow: interstitial solute transport in brain is diffusive and aquaporin-4 independent. J Physiol (Lond) 597: 4421–4424. https://doi.org/10.1113/JP277636
  89. Ray LA, Heys JJ (2019) Fluid flow and mass transport in brain tissue. Fluids 4: 196–233. https://doi.org/10.3390/fluids4040196
  90. Obersteiner H (1900) The Anatomy of the Central Nervous Organs in Health and Disease. 2nd Ed. London. Charles Griffin and Company Ltd. 174–175.
  91. Bruce A, Dawson JW (1911) On the relations of the lymphatics of the spinal cord. J Pathol Bacteriol 15: 169–178. https://doi.org/10.1002/path.1700150204
  92. Prineas JW (1979) Multiple sclerosis: Presence of lymphatic capillaries and lymphoid tissue in the brain and spinal cord. Science 203: 1123–1125. https://doi.org/10.1126/science.424741
  93. Chaitanya GV, Omura S, Sato F, Martinez NE, Minagar A, Ramanathan M, Guttman BW, Zivadinov R, Tsunoda I, Alexander JS (2013) Inflammation induces neuro-lymphatic protein expression in multiple sclerosis brain neurovasculature. J Neuroinflammat 14 (10): 125. https://doi.org/10.1186/1742-2094-10-125
  94. Kuerten S, Schickel A, Kerkloh C, Recks MS, Addicks K, Ruddle NH, Lehmann PV (2012) Tertiary lymphoid organ development coincides with determinant spreading of the myelin-specific T cell response. Acta Neuropathol 124: 861–873. https://doi.org/10.1007/s00401-012-1023-3
  95. Mezey E, Szalayova I, Hogden CT, Brady A, Dosa A, Sotonui P, Palkovits M (2021) An immunohistochemical study of lymphatic elements in the human brain. PNAS 118 (3): 1–12. https://doi.org/10.1073/pnas.2002574118
  96. Morris AW, Carare RO, Schreiber S, Hawkes CA (2014) The Cerebrovascular Basement Membrane: Role in the Clearance of β-amyloid and Cerebral Amyloid Angiopathy. Front Aging Neurosci 19 (6): 251. https://doi.org/10.3389/fnagi.2014.00251
  97. Chikly B (1998) Is Human Cerebrospinal Fluid Reabsorbed by Lymph? LDT and Manual drainage of the CNS. J Am Acad Osteopathy (JAAO) 8 (2): 28–34.
  98. Antila S, Karaman S, Nurmi H, Airavaara M, Voutilainen MH, Mathivet T, Chilov D, Li Z, Koppinen T, Park JH, Fang S, Aspelund A, Saarma M, Eichmann A, Thomas JL, Alitalo K (2017) Development and plasticity of meningeal lymphatic vessels. J Exp Med 214 (12): 3645–3667. https://doi.org/10.1084/jem.20170391
  99. Wigle JT, Oliver G (1999) Prox1 function is required for the development of the murine lymphatic system. Cell 98: 769–778. https://doi.org /10.1016/S0092 -8674(00)81511-1
  100. Escobedo N, Oliver G (2016) Lymphangiogenesis: Ori gin, Specification, and Cell Fate Determination. Annu Rev Cell Dev Biol 32: 677–691. https://doi.org/10.1146/annurev-cellbio-111315-124944
  101. Karkkainen MJ, Haiko P, Sainio K, Partanen J, Taipale J, Petrova TV, Jeltsch M, Jackson DG, Talikka M, Rauvala H, Betsholtz C, Alitalo K (2004) Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 5: 74–80. https://doi.org /10.1038 /ni1013
  102. Breslin JW, Yang Y, Scallan JP, Sweat RS, Adderley SP, Murfee WL (2018) Lymphatic Vessel Network Structure and Physiology. Compr Physiol 9 (1): 207–299. https://doi.org/10.1002/cphy.c180015
  103. Hägerling R, Pollmann C, Andreas M, Schmidt C, Nurmi H, Adams RH, Alitalo K, Andresen V, Schulte-Merker S, Kiefer F (2013) A novel multistep mechanism for initial lymphangiogenesis in mouse embryos based on ultramicroscopy. EMBO J 32: 629–644. https://doi.org/10.1038 /emboj .2012.340
  104. Kunert C, Baish JW, Liao S, Padera TP, Munn LL (2015) Mechanobiological oscillators control lymph flow. Proc Natl Acad Sci U S A 112 (35): 10938–10943. https://doi.org/10.1073/pnas.1508330112
  105. Scallan JP, Zawieja SD, Castorena-Gonzalez JA, Davis MJ (2016) Lymphatic pumping: mechanics, mechanisms and malfunction. J Physiol 594 (20): 5749–5768. PMID: https://doi.org/10.1113/jp27208827219461
  106. Drapier JC, Hirling H, Wietzerbin J, Kaldy P, Kühn LC (1993) Biosynthesis of nitric oxide activates iron regulatory factor in macrophages. EMBO J 21: 3643–3649. https://doi.org/10.1002/j.1460-2075.1993.tb06038.x
  107. Lepoivre M, Fieschi F, Coves J, Thelander L, Fontecav M (1991) Inactivation of ribonucleotide reductase by nitric oxide. Biochem Biophys Res Commun 179: 442–448. https://doi.org/10.1016/0006-291X(91)91390-X
  108. Drapier JC, Hibbs Jr B (1996) Aconitases: a class of metalloproteins highly sensitive to nitric oxide synthesis. Methods Enzymol 269: 26–36. https://doi.org/10.1016/S0076-6879(96)69006-5
  109. Dimmeler S, Lottspeich F, Brüne B (1992) Nitric oxide causes ADP-ribosylation and inhibition of glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 267: 16771–16774. https://doi.org/10.1016/S0021-9258(18)41847-9
  110. Stamler JS, Simon DI, Osborne JA, Mullins ME, Jaraki O, Michel T, Singel DJ, Loscalzoet J (1992) S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci U S A 89: 444–448. https://doi.org/10.1073/pnas.89.1.444
  111. Helms C, Kim-Shapiro DB (2013) Hemoglobin-mediated nitric oxide signaling. Free Radic Biol Med 61: 464–472. https://doi.org/10.1016/j.freeradbiomed.2013.04.028
  112. Ahn JH, Cho H, Kim JH, Kim SH, Ham JS, Park I, Suh SH, Hong SP, Song JH, Hong YK, Jeong Y, Park SH, Koh GY (2019) Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature 572: 62–66. https://doi.org/10.1038/s41586-019-1419-5
  113. Lessen MV, Shibata-Germanos S, Impel AV, Hawkins TA, Rihel J, Schulte-Merker S (2017) Intracellular uptake of macromolecules by brain lymphatic endothelial cells during zebrafish embryonic development. eLife 6: e25932. https://doi.org/10.7554/eLife.25932
  114. Fox RJ, Walji AH, Mielke B, Petruk KC, Aronyk KE (1996) Anatomic details of intradural channels in the parasagittal dura: a possible pathway for flow of cerebrospinal fluid. Neurosurgery 39: 84–91. https://doi.org/10.1097/00006123-199607000-00017
  115. Osaka K, Handa H, Matsumoto S, Yasuda M (1980) Development of the cerebrospinal fluid pathway in the normal and abnormal human embryos. Child’s Brain 6: 26–38. https://doi.org/10.1159/000119881
  116. Jayatilaka ADP (1969) Arachnoid Granulations and Arachnoid Villi in Mammals. C B Y I O N J Med Sci 18:1.
  117. Semyachkina-Glushkovskaya O, Fedosov I, Navolokin N, Shirokov A, Maslyakova G, Bucharskaya A, Blokhina I, Terskov A, Khorovodov A, Postnov D, Kurths J (2021) Pilot identification of the Live-1/Prox-1 expressing lymphatic vessels and lymphatic elements in the unaffected and affected human brain. bioRxiv 2021.09.05.458990. https://doi.org/10.1101/2021.09.05.458990
  118. Semyachkina-Glushkovskaya O, Penzel T, Blokhina I, Khorovodov A, Fedosov I, Yu T, Karandin G, Evsukova A, Elovenko D, Adushkina V, Shirokov A, Dubrovskii A, Terskov A, Navolokin N, Tzoy M, Ageev V, Agranovich I, Telnova V, Tsven A, Kurths J (2021) Night Photostimulation of Clearance of Beta-Amyloid from Mouse Brain: New Strategies in Preventing Alzheimer’s Disease. Cells 10: 3289. https://doi.org/10.3390/cells10123289
  119. Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, Detmar M, Wiig H, Alitalo K (2015) A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med 212 (7): 991–999. https://doi.org/10.1084/jem.20142290
  120. Bolte AC, Dutta AB, Hurt ME, Igor Smirnov I, Kovacs MA, McKee CA, Hannah Ennerfelt E, Shapiro D, Nguyen BH, Frost EL, Lammert CR, Kipnis J, Lukens JR (2020) Meningeal lymphatic dysfunction exacerbates traumatic brain injury pathogenesis. Nat Commun 11: 4524. https://doi.org/10.1038/s41467-020-18113-4
  121. Semyachkina-Glushkovskaya O, Esmat A, Bragin D, Bragina O, Shirokov AA, Navolokin N, Yang Y, Abdurashitov A, Khorovodov A, Terskov A, Klimova M, Mamedova A, Fedosov I, Tuchin V, Kurths J (2020) Phenomenon of music-induced opening of the blood-brain barrier in healthy mice. Proc R Soc B 287: 20202337. https://doi.org/10.1098/rspb.2020.2337
  122. Song E, Mao T, Dong H, Boisserand LSB, Antila S, Bosenberg M, Alitalo K, Thomas JL, Iwasaki A (2020) VEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumours. Nature 577 (7792): 689–694. https://doi.org/10.1038/s41586-019-1912-x
  123. Graham MS, Mellinghoff IK (2021) Meningeal lymphatics prime tumor immunity in glioblastoma. Cancer Cell 39 (3): 304–306. https://doi.org/10.1016/j.ccell.2021.02.012
  124. Mascagni P, Bellini GB (1816) Presso Euse bio Pacinie Figlio: Florence.
  125. Mascagni P (1787) De lymphaticis profundis capitis et colli. Vasorum lymphaticorum corporis humani historia et ichnographia. Pars Prima Section VII, Art. VI. Siena: Pazzini Carli.
  126. Lecco V (1953) Di una probabile modificazione delle fissure linfatiche della della parte dei seni venosi della dura madre. Arch Ital Otol Rinol Laringol 64: 287–296.
  127. Absinta M, Ha SK, Nair G, Sati P, Luciano NJ, Palisoc M, Louveau A, Zaghloul KA, Pittaluga S, Kipnis J, Reich DS (2017) Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI. Elife 6: e29738. https://doi.org/10.7554/eLife.29738
  128. Mezey É, Palkovits M (2015) Forgotten findings of brain lymphatics. Nature 524: 415. https://doi.org/10.1038/524415b
  129. Semyachkina-Glushkovskaya O, Postnov D, Lavrova A, Fedosov I, Borisova E, Nikolenko V, Penzel T, Kurths J, Tuchin V (2021) Biophotonic Strategies of Measurement and Stimulation of the Cranial and the Extracranial Lymphatic Drainage Function. IEEE J Selected Topics in Quantum Electron 27 (4): 1–13. https://doi.org/10.1109/JSTQE.2020.3045834
  130. Semyachkina-Glushkovskaya O, Fedosov I, Shirokov A, Vodovozov E, Alekseev A, Khorovodov A, Blokhina I, Terskov A, Mamedova A, Klimova M, Dubrovsky A, Ageev V, Agranovich I, Vinnik V, Tsven A, Sokolovski S, Rafailov E, Penzel T, Jürgen Kurths J (2021) Photomodulation of lymphatic delivery of liposomes to the brain bypassing the blood-brain barrier: new perspectives for glioma therapy. Nanophotonics 10 (12): 3215–3227. https://doi.org/10.1515/nanoph-2021-0212
  131. Salehpour F, Khademi M, Bragin DE, DiDuro JO (2022) Photobiomodulation Therapy and the Glymphatic System: Promising Applications for Au gmenting the Brain Lymphatic Drainage System. Int J Mol Sci 23 (6): 2975. https://doi.org/10.3390/ijms23062975
  132. https://lymphalessons.com

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (2MB)
3.

Download (534KB)
4.

Download (938KB)
5.

Download (1MB)
6.

Download (1MB)

Copyright (c) 2023 О.В. Семячкина-Глушковская, Д.Э. Постнов, А.П. Хороводов, Н.А. Наволокин, Ю.Г.Г. Куртц

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies