MAGNETIC AND SUPERCONDUCTING PROPERTIES OF Fe-DOPED HIGH-TEMPERATURE SUPERCONDUCTORS YBaCuO SYNTHESIZED BY SOL-GEL METHOD
- 作者: Pigal'skiy K.S.1, Vishnev A.A.1, Efimov N.N.2, Vasil'ev P.N.2, Shabatin A.V.3, Trakhtenberg L.I.1,4
-
隶属关系:
- Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences
- Lomonosov Moscow State University
- 期: 卷 166, 编号 2 (2024)
- 页面: 246-254
- 栏目: Articles
- URL: https://journals.rcsi.science/0044-4510/article/view/261689
- DOI: https://doi.org/10.31857/S0044451024080108
- ID: 261689
如何引用文章
详细
For a series of iron-doped polycrystalline high-temperature superconductors Y1–xFexBa2Cu3Oy (0 ≤ x ≤ 0.05), synthesized using the nitrate-citrate variant of the sol-gel method, studies of structural (by X-ray and electron microscopy methods) and magnetic (in alternating and constant magnetic fields) properties were conducted. For these samples, the dependencies of crystallographic parameters, crystallite sizes, superconducting transition temperatures on the doping level were determined, as well as the type and magnitude of magnetization hysteresis in fields up to 6 T. Field dependencies of intracrystalline critical current density Jc were calculated. It was shown that uniform distribution of the dopant throughout the crystallite volume due to the application of the sol-gel method leads to significant improvement in functional parameters compared to samples obtained by solid-state method. The microstructure improves, which is manifested in increased sizes and more distinct crystallite faceting, as well as narrowing of the temperature interval of transition to the superconducting state, increase in the magnitude of magnetic field hysteresis of magnetization and critical current. As a result, in sol-gel samples with iron doping level x ≈ 0.03, an increase effect Jc exceeding an order of magnitude is achieved.
作者简介
K. Pigal'skiy
Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
Email: pigalskiy@gmail.com
俄罗斯联邦, 119991, Moscow
A. Vishnev
Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
Email: pigalskiy@gmail.com
俄罗斯联邦, 119991, Moscow
N. Efimov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: pigalskiy@gmail.com
俄罗斯联邦, 119991, Moscow
P. Vasil'ev
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: pigalskiy@gmail.com
俄罗斯联邦, 119991, Moscow
A. Shabatin
Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences
Email: pigalskiy@gmail.com
俄罗斯联邦, 119071, Moscow
L. Trakhtenberg
Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences; Lomonosov Moscow State University
编辑信件的主要联系方式.
Email: pigalskiy@gmail.com
俄罗斯联邦, 119991, Moscow; 119991, Moscow
参考
- G.V.M. Kiruthika, K.V. Govindan Kutty, and U.V. Varadarju, Solid State Ionics 110, 335 (1998).
- A.V. Shlyakhtina, N.V. Lyskov, A.N. Shchegolikhin, S.A. Chernyak, A.V. Knotko, I.V. Kolbanev, and L.G. Shcherbakova, Ceram. Int. 46, 17383 (2020).
- Е.Д. Политова, Г.М. Калева, А.В. Мосунов,
- С.Ю. Стефанович, Е.В. Клюкина, Е.А. Беспалова, А.В. Лопатин, Н.М. Метальников, М.Э. Сапрыкин, А.Б. Логинов, И.В. Оразов, Б.А. Логинов, Неорган.матер. 58, 1377 (2022).
- J. Ma, K. Chen, C. Li, X. Zhang, and L. An, Ceram. Int. 47, 24348 (2021).
- J. Zhang , S. Liu, Z. Tian, Y. Zhang, and Z. Shi, Materials 16, 2214 (2023).
- J. Mr´azek, S. Kamr´adkov´a, J. Burˇs´ık, R. Sk´ala, I. Bartoˇn, P. Var´ak, Y. Baravets, and O. Podrazk¨y, J. Sol-Gel Sci.Technol. 107, 320 (2023).
- B. Keimer, S.A. Kivelson, M.R. Norman, S. Uchida, and J. Zaanen, Nature 518, 179 (2015).
- Л. Г. Мамсурова, К.С. Пигальский, Н. Г. Трусевич, А.А. Вишнёв, М.А. Рогова, С.Ю. Гаврилкин, Ф.Ю. Цветков, Письма в ЖЭТФ 102, 752 (2015).
- J. Shimoyama, Y. Tazaki, Y. Ishii, T. Nakashima, S. Horii, and K. Kishio, J. of Phys.: Conf. Series 43, 235 (2006).
- Y. Ishii, J. Shimoyama, Y. Tazaki, T. Nakashima, S. Horii, and K. Kishio, Appl.Phys. Lett. 89, 202514 (2006).
- K. Rogacki, B. Dabrowski, and O. Chmaissem, Phys. Rev.B 73, 224518 (2006).
- Los, B. Dabrowski, and K. Rogacki, Cur.Appl. Phys. 27, 1 (2021).
- R. F. Lopes, V.N. Vieira, F.T. Dias, P. Pureur, J. Schaf, M. L. Hneda, and J. J. Roa, IEEE Trans.: Appl. Supercond. 26, 8002004 (2016).
- Minghu, C. Meng, J. Zhengkuan, and Z. Qirui, Jpn. J.Appl.Phys. 33, 3892 (1994).
- D. M. Gokhfeld, D. A. Balaev, I. S. Yakimov, M. I. Petrov, and S.V. Semenov, Ceram. Inter. 43, 9985 (2017).
- K. S.Pigalskiy, A.A.Vishnev, N.N.Efimov, A.V. Shabatin, and L. I. Trakhtenberg, Curr.Appl. Phys. 41, 116 (2022).
- M. Kakihana, J. Sol-Gel Sci.Technol. 6, 7 (1996).
- R. S. Liu, W.N. Wang, C.T. Chang, and P.T. Wu, Jpn. J.Appl.Phys. 28, L2155 (1989).
- Blinov, V.G. Fleisher, H. Huhtinen, R. Laiho, E. L¨ahderanta, P. Paturi, Yu.P. Stepanov, and L. Vlasenko, Supercond. Sci.Technol. 10, 818 (1997).
- J. Raittila, H. Huhtinen, P. Paturi, and Yu.P. Stepanov, Physica C 371, 90 (2002).
- Л. Г. Мамсурова, Н. Г. Трусевич, А.А. Вишнёв, К.С. Пигальский, Л.И. Трахтенберг, Хим.физика 39, 66 (2020).
- J.R. Clem and V.G. Kogan, Jap. J.Appl.Phys. 26, 1161 (1987).
- А.М. Балагуров, Л.Г. Мамсурова, И.А. Бобриков, То Тхань Лоан, В.Ю. Помякушин, К.С. Пигальский, Н. Г. Трусевич, А.А. Вишнев, ЖЭТФ 141, 1144 (2012).
- K.S.Pigalskiy, N.N.Efimov, P.N.Vasilyev, A.A.Vishnev, and L. I. Trakhtenberg, Physica C 612, 1354318 (2023).
- T. Ugawa, S. Horii, T. Maeda, M. Haruta, and J. Shimoyama, Physica C 494, 41 (2013).
- Y. Paltiel, E. Zeldov, Y.N. Myasoedov, H. Shtrikman, S. Brattacharya, M. J. Higgins, Z. L. Xiao, E.Y. Andrei, P. L. Gammel, and D. J. Bishop, Nature 403, 398 (2000).
- P. Mikitik and E.H. Brandt, Phys.Rev.B 64, 184514 (2001).
补充文件
