Odnoelektronnaya perezaryadka pri stolknoveniyakh bystrykh ionov s molekulyarnym vodorodom v predstavlenii parametra udara

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Представлен теоретический метод для расчета сечений одноэлектронной перезарядки при столкновениях быстрых ионов с молекулой H2 в основном состоянии. Задача рассеяния при ион-молекулярных столкновениях формулируется в представлении параметра удара с использованием связи между квантовомеханической и квазиклассической амплитудами перезарядки. Амплитуды перезарядки и соответствующие вероятности захвата электрона в состояния (nlm) налетающего иона получены в приближении Бринкмана-Крамерса. Выведены общие аналитические выражения для амплитуд вероятности одноэлектронной перезарядки в n-состояния, просуммированные по квантовым числам l и m, из которых затем вычисляются соответствующие вероятности перезарядки с использованием процедуры многоканальной нормировки. Для столкновений H+ + H2 рассмотрена зависимость дифференциальных сечений перезарядки, проинтегрированных по параметру удара налетающего иона, от ориентации молекулы H2 и даны сравнения с измерениями и другими расчетами. Вычислены полные сечения одноэлектронной перезарядки, проинтегрированные по ориентациям молекулы H2 и просуммированные по n-состояниям, для ряда голых ядер и многозарядных ионов, и представлено их сравнение с имеющимися экспериментальными данными и результатами расчетов с помощью других теоретических методов.

作者简介

F. Goryaev

Email: goryaev_farid@mail.ru

参考

  1. H. Knudsen, H. K. Haugen, and P. Hvelplund, Phys. Rev. A 24, 2287 (1981).
  2. I. Tolstikhina, M. Imai, N. Winckler, and V. Shevelko, Basic Atomic Interactions of Accelerated Heavy Ions in Matter, Springer Series on Atomic, Optical, and Plasma Physics, Vol. 98, Springer-Verlag GmbH (2018).
  3. V. P. Shevelko, P. Scharrer, C. E. Du¨llmann et al., NIMB 428, 56 (2018).
  4. P. Scharrer, C. E. Du¨llmann, W. Barth et al., Phys. Rev. Acceler. Beams 20, 043503 (2017).
  5. Y. T. Oganessian, V. K. Utyonkov, Y. V. Lobanov, et al., Phys. Rev. C 64, 064309 (2001).
  6. Y. T. Oganessian and V. K. Utyonkov, Rep. Progr. Phys. 78, 036301 (2015).
  7. J. Khuyagbaatar, V. P. Shevelko, A. Borschevsky, et al., Phys. Rev. A 88, 042703 (2013).
  8. T. F. Tuan and E. Gerjuoy, Phys. Rev. 117, 756 (1960).
  9. P. P. Ray and B. C. Saha, Phys. Lett. A 71, 415 (1979).
  10. P. P. Ray and B. C. Saha, Phys. Rev. A 23, 1807 (1981).
  11. N. C. Deb, A. Jain, J. H. McGuire, Phys. Rev. A 38, 3769 (1988).
  12. E. G. Adivi, J. Phys. B 42, 095207 (2009).
  13. R. Shingal, C. D. Lin, Phys. Rev. A 40, 1302 (1989).
  14. Y. D. Wang, J. H. McGuire, R. D. Rivarola, Phys. Rev. A 40, 3673 (1989).
  15. Y. D. Wang and J. H. McGuire, Phys. Rev. A 44, 367 (1991).
  16. L. Meng, C. O. Reinhold, R. E. Olson, Phys. Rev. A 40, 3637 (1989).
  17. L. Meng, C. O. Reinhold, R. E. Olson, Phys. Rev. A 42, 5286 (1990).
  18. C. Illescas and A. Riera, Phys. Rev. A 60, 4546 (1999).
  19. H.F. Busnengo, S.E. Corchs, R.D. Rivarola, Phys. Rev. A 57, 2701 (1998).
  20. S. Halder, S. Samaddar, K. Purkait, et al., Indian J. Phys. 94, 151 (2020).
  21. V. P. Shevelko, J. Phys. B 13, L319 (1980).
  22. V. P. Shevel'ko, J. Tech. Phys. 46, 1225 (2001).
  23. http://cdfe.sinp.msu.ru/services/cccs/HTM/main.htm.
  24. D. R. Bates and R. McCarroll, Proc. Royal Soc. London A 245, 175 (1958).
  25. D. R. Bates, Proc. Royal Soc. London A 247, 294 (1958).
  26. R.M. May, Phys. Rev. 136, 669 (1964).
  27. R. M. Drisko, Ph.D. thesis, Carnegie-Mellon University (1955).
  28. A. M. Brodskiˇi, V. S. Potapov, V. V. Tolmachev, Soviet JETP 31, 144 (1970).
  29. V. S. Potapov, Soviet JETP 36, 228 (1973).
  30. S. C. Wang, Phys. Rev. 31, 579 (1928).
  31. S. Weinbaum, J. Chem. Phys. 1, 593 (1933).
  32. K. Støchkel, O. Eidem, H. Cederquist, et al., Phys. Rev. A 72, 050703 (2005).
  33. D. Fischer, M. Gudmundsson, K. Støchkel, et al., J. Phys. Conf. Series, Vol. 88, 012021 (2007).
  34. M. B. Shah, P. McCallion, H. B. Gilbody, J. Phys. B 22, 3983 (1989).
  35. S.E. Corchs, R.D. Rivarola, J.H. McGuire, et al., Phys. Rev. A 47, 201 (1993).
  36. H. Tawara, T. Kato, and Y. Nakai, At. Data Nucl. Data Tables 32, 235 (1985).
  37. W. Schwab, G. B. Baptista, E. Justiniano, et al., J. Phys. B 20, 2825 (1987).
  38. C. F. Barnett, H. T. Hunter, M. I. Fitzpatrick, et al., Atomic data for fusion, Vol. 1 (1990).
  39. W. Fritsch, Phys. Rev. A 46, 3910 (1992).
  40. S. E. Corchs, R. D. Rivarola, J. H. McGuire, et al., Physica Scripta 50, 469 (1994).
  41. M. E.Rudd, T. V. Go e, A. Itoh, Phys. Rev. A 32, 2128 (1985).
  42. M. M. Sant'anna, W. S. Melo, A. C. Santos, et al., Phys. Rev. A 61, 052717 (2000).
  43. I. S. Dmitriev, Y. A. Teplova, Y. A. Belkova, et al., Soviet JETP 98, 918 (2004).
  44. R. Phaneuf, R. Janev, and M. Pindzola, Atomic data for fusion, Vol. 5 (1987).
  45. W. G. Graham, K. H. Berkner, R. V. Pyle, et al., Phys. Rev. A 30, 722 (1984).
  46. R. Anholt, X. Y. Xu, C. Stoller, et al., Phys. Rev. A 37, 1105 (1988).
  47. J. Eichler and F.T. Chan, Phys. Rev. A 20, 104 (1979).
  48. L. F. Errea, L. Fern'andez, A. Mac'ıas, et al., Phys. Rev. A 69, 012705 (2004).
  49. E. C. Montenegro, G. M. Sigaud, and W. E. Meyerhof, Phys. Rev. A 45, 1575 (1992).

版权所有 © Russian Academy of Sciences, 2023

##common.cookie##