Kollektivnye i kvazilokal'nye mody v opticheskikh spektrakh geksaboridov YB6 i YbB6 s yan-tellerovskoy strukturnoy neustoychivost'yu

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The broad-band reflection spectra of YB6 and YbB6 hexaborides with Jahn–Teller instability of the boron cage have been measured at room temperature. An optical conductivity analysis has revealed, along with the Drude electronic components, heavily overdamped collective modes, which are notable in YB6 for high dielectric contributions, Δε = 2000–5700. The fraction of nonequilibrium charge carriers in YB6, which is at the boundary of structural instability in the hexaboride family, reaches 85–90%, whereas this fraction in doped YbB6 semiconductor is not higher than 25%. It has been shown that unlike the predictions of the topological Kondo insulator model, the surface “metallization” in Yb2+B6 crystals can be explained by additional doping of a surface layer with Yb3+ ions.

作者简介

N. Sluchanko

Prokhorov General Physics Institute, Russian Academy of Sciences

Email: nes@lt.gpi.ru
119991, Moscow, Russia

E. Zhukova

Center for Photonics and Two-Dimensional Materials, Moscow Institute of Physics and Technology (National Research University)

Email: nes@lt.gpi.ru
141700, Dolgoprudny, Moscow oblast, Russia

L. Alyab'eva

Center for Photonics and Two-Dimensional Materials, Moscow Institute of Physics and Technology (National Research University)

Email: nes@lt.gpi.ru
141700, Dolgoprudny, Moscow oblast, Russia

B. Gorshunov

Center for Photonics and Two-Dimensional Materials, Moscow Institute of Physics and Technology (National Research University)

Email: nes@lt.gpi.ru
141700, Dolgoprudny, Moscow oblast, Russia

A. Muratov

Lebedev Physics Institute, Russian Academy of Sciences

Email: nes@lt.gpi.ru
119991, Moscow, Russia

Yu. Aleshchenko

Lebedev Physics Institute, Russian Academy of Sciences

Email: nes@lt.gpi.ru
119991, Moscow, Russia

A. Azarevich

Prokhorov General Physics Institute, Russian Academy of Sciences

Email: nes@lt.gpi.ru
119991, Moscow, Russia

M. Anisimov

Prokhorov General Physics Institute, Russian Academy of Sciences

Email: nes@lt.gpi.ru
119991, Moscow, Russia

N. Shitsevalova

Institute for Problems of Materials Science, National Academy of Sciences of Ukraine

编辑信件的主要联系方式.
Email: nes@lt.gpi.ru
03142, Kiev, Ukraine

参考

  1. M. Bakr, R. Kinjo, Y.W. Choi et al., Phys. Rev. Special Topics - Accelerators and Beams 14, 060708 (2011). doi: 10.1103/PhysRevSTAB.14.060708
  2. M. Trenary, Sci. Tech. Adv. Mat. 13, 023002 (2012).
  3. Y. Onuki, A. Umezawa, W. K. Kwok et al, Phys. Rev. B 40, 11195 (1989). doi: 10.1103/PhysRev B.40.11195
  4. M. Amara, S. E. Luca, R.M. Galera et al., Phys. Rev. B 72, 064447 (2005). doi: 10.1103/PhysRev B.72.064447
  5. K. Segawa, A. Tomita, K. Iwashita, et al., J. Magn. Magn. Mat. 104-107, 1233 (1992). DOI: 10.1016/ 0304-8853(92)90563-4
  6. A. S. Cameron, G. Friemel, and D. S. Inosov, Rep. Prog. Phys. 79, 066502 (2016).
  7. M. C. Aronson, J. L. Sarrao, Z. Fisk et al., Phys. Rev. B 59, 4720 (1999). doi: 10.1103/PhysRevB. 59.4720
  8. V. V. Glushkov, A. D. Bozhko, A. V. Bogach et al., Phys. Stat. Sol. RRL 10, 320 (2016).
  9. N. Sluchanko, V. Glushkov, S. Demishev et al., Phys. Rev. B 96, 144501 (2017). DOI: 10.1103/ PhysRevB.96.144501
  10. D. J. Kim, J. Xia, and Z. Fisk, Nat. Mater. 13, 466 (2014). doi: 10.1103/PhysRevLett.104.106408
  11. E. Dagotto, Sciencе 309, 257 (2005).
  12. E. S. Zhukova, B. P. Gorshunov, G. A. Komandin et al., JETP Lett. 110, 79 (2019).
  13. E. S. Zhukova, B. P. Gorshunov, G. A. Komandin et al., Phys. Rev. B 100, 104302 (2019)
  14. H. Werheit, V. Filipov, N. Shitsevalova et al., J. Phys. Condens. Matter 24, 385405 (2012). DOI: 10.1088/ 0953-8984/24/38/385405
  15. Б. П. Горшунов, А. А. Волков, А. С. Прохоров, И. Е. Спектор. ФТТ 50, 1921 (2008).
  16. S.-I. Kimura, T. Nanba, S. Kunii, and T. Kasuya, J. Phys. Soc. Jpn. 59, 3388 (1990). DOI: 10.1143/ JPSJ.59.3388
  17. B. P. Gorshunov, E. S. Zhukova, G. A. Komandin et al., JETP Lett. 107, 100 (2018). DOI: 10.1134/ S0021364018020029
  18. N. E. Sluchanko, A. N. Azarevich, A. V. Bogach et al., J. Phys. Condens. Matter 31, 065604 (2019). doi: 10.1088/1361-648X/aaf44e
  19. N. B. Bolotina, A. P. Dudka, O. N. Khrykina et al., Phys. Rev. B 100, 205103 (2019).
  20. M. Hartstein, Hsu Liu, Yu-Te Hsu et al., Science 23, 101632 (2020).
  21. M. Xia, J. Jiang, Z. R. Ye et al., Sci. Rep. 4, 5999 (2014).
  22. Z. Yahia, S. Turrell, J. Turrell and J. P. Mercurio, J. Molecular Struct. 224, 303 (1990).
  23. S.-I. Kimura, T. Nanba, S. Kunii, and T. Kasuya, J. Phys. Soc. Jpn. 61, 371 (1992).
  24. E. Franzeskakis, N. de Jong, J. X. Zhang et al., Phys. Rev. B 90, 235116 (2014).
  25. Tay-Rong Chang, Tanmoy Das, Peng-Jen Chen et al., Phys. Rev. B 91, 155151 (2015).
  26. Chang-Jong Kang, J. D. Denlinger, J. W. Allen, et al., Phys. Rev. Lett. 116, 116401 (2016).
  27. Yazhou Zhou, Dae-Jeong Kim, Priscila F. S. Rosa et al., Phys. Rev. B 92, 241118 (2015).

版权所有 © Russian Academy of Sciences, 2023

##common.cookie##