СИЛЬНОЕ ОТРИЦАТЕЛЬНОЕ МАГНИТОСОПРОТИВЛЕНИЕ ИПРЫЖКОВЫЙ ТРАНСПОРТ В ГРАФЕНИЗИРОВАННЫХНЕМАТИЧЕСКИХ АЭРОГЕЛЯХ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Исследованы транспортные свойства нематических аэрогелей, состоящих из покрытых графеновой оболочкой ориентированных нановолокон муллита. Показано, что магнитосопротивление этой системы хорошо аппроксимируется двумя вкладами - отрицательным, описываемым формулой для систем со слабой локализацией, и положительным, линейным по полю и ненасыщающимся в больших магнитных полях.Характер температурной зависимости длины сбоя фазы, полученной из анализа отрицательного вклада,указывает на главную роль электрон-электронного взаимодействия в разрушении фазовой когерентностии, предположительно, на переход при низких температурах от двухмерного режима слабой локализации к одномерному. Положительный линейный вклад в магнитосопротивление, по-видимому, обусловлен неоднородным распределением в токопроводящей среде локальной плотности носителей. Установлено также,что температурную зависимость сопротивления графенизированных аэрогелей для образцов с малым содержанием углерода, когда графеновое покрытие, по-видимому, является неполным, можно представить в виде суммы двух вкладов, один из которых характерен для слабой локализации, а второй описывается прыжковым механизмом, соответствующим закону Эфроса – Шкловского в случае гранулярной проводящей среды. Для образцов с большим содержанием углерода второй вклад отсутствует.

Об авторах

В. И Цебро

Физический институт им. П.Н. Лебедева Российской академии наук; Институт физических проблем им. П.Л. Капицы Российской академии наук

Email: v.tsebro@mail.ru
119991, Москва, Россия; 119334, Москва, Россия

Е. Г Николаев

Институт физических проблем им. П.Л. Капицы Российской академии наук

Email: nikolaev@kapitza.ras.ru
119334, Москва, Россия

М. С Кутузов

Metallurg Engineering Ltd.

11415, Tallinn, Estonia

А. В Садаков

Физический институт им. П.Н. Лебедева Российской академии наук

119991, Москва, Россия

О. А Соболевский

Физический институт им. П.Н. Лебедева Российской академии наук

119991, Москва, Россия

Список литературы

  1. I. Hussainova, R. Ivanov, S. N. Stamatin et al., Carbon 88, 157 (2015).
  2. R. Ivanov, V. Mikli, J. K¨ubarsepp and I. Hussainova, Key Engin. Mater. 674, 77 (2016).
  3. V. S. Solodovnichenko, M. M. Simunin, D. V. Lebedev et al., Thermochim. Acta 675, 164 (2019).
  4. В. И. Цебро, Е. Г. Николаев, Л. Б. Луганский и др., ЖЭТФ 161, 266 (2022).
  5. S. Hikami, A.I. Larkin and Y. Nagaoka, Prog. Of Theor. Phys. 63, 707 (1980).
  6. P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).
  7. N. Ramakrishnan, Y. T. Lai, S. Lara et al., Phys. Rev. B 96, 224203 (2017).
  8. J. Ping, I. Yudhistira, N. Ramakrishnan et al., Phys. Rev. Lett. 113, 047206 (2014).
  9. A. Narayanan, M. D.Watson, S. F. Blake et al., Phys. Rev. Lett. 114, 117201 (2015).
  10. W. L. Zhu, Y. Cao, P. J. Guo et al., Phys. Rev. B 105, 125116 (2022).
  11. A. L. Friedman, J. L. Tedesco, P. M. Campbell et al., Nano Lett. 10, 3962, (2010).
  12. F. Kisslinger, C. Ott, C. Heide et al., Nat. Phys. 11, 650 (2015).
  13. S. Gu, K. Fan, Y. Yang et al., Phys. Rev. B 104, 115203 (2021).
  14. Б. И. Шкловский, А. Л. Эфрос, Электронные свойства легированных полупроводников, Наука, Москва (1979).
  15. B. I. Shklovskii and A. L. Efros, in Electronic Properties of Doped Semiconductors, Vol. 45 of Springer Series in Solid-State Sciences, Springer-Verlag, Berlin, Heidelberg GmbH (1984).
  16. J. Zhang and B. I. Shklovskii, Phys. Rev. B 70, 115317 (2004).
  17. I. S. Beloborodov, A. V. Lopatin, V. M. Vinokur, and K. B. Efetov, Rev. Mod. Phys. 79 469 (2007).
  18. T. Hu and B. I. Shklovskii, Phys. Rev. B 74, 054205 (2006).
  19. T. Hu and B. I. Shklovskii, Phys. Rev. B 74, 174201 (2006).
  20. I. L. Aleiner, B. L. Altshuler, and M. E. Gershenson, Waves in Random Media 9, 201 (1999).
  21. L. Piraux, F. Abreu Araujo, T. N. Bui et al., Phys. Rev. B 92, 085428 (2015).
  22. B. L. Altshuler, A. G. Aronov, and D. E. Khmelnitsky, J. Phys. C: Sol. St. Phys. 15, 7367 (1982).
  23. S. Lara-Avila, A. Tzalenchuk, S. Kubatkin et al., Phys. Rev. Lett. 107, 166602 (2011).
  24. A. M. R. Baker, J. A. Alexander-Webber, T. Altebaeumer et al., Phys. Rev. B 86, 235441 (2012).
  25. F. V. Tikhonenko, D. W. Horsell, R. V. Gorbachev, and A. K. Savchenko, Phys. Rev. Lett. 100, 056802 (2008).
  26. D.-K. Ki, D. Jeong, J.-H. Choi et al., Phys. Rev. B 78, 125409 (2008).
  27. R. Tarkiainen, M. Ahlskog, A. Zyuzin et al., Phys. Rev. B 69 033402 (2004).
  28. F. V. Tikhonenko, A. A. Kozikov, A. K. Savchenko, and R. V. Gorbachev, Phys. Rev. Lett. 103 226801 (2009).
  29. R. Xu, A. Husmann, T. F. Rosenbaum et al., Nature 390 57 (1997).
  30. A. Husmann, J. B. Betts, G. S. Boebinger et al., Nature 417, 421 (2002).
  31. M. M. Parish and P. B. Littlewood, Nature 426, 162 (2003).
  32. M. M. Parish and P. B. Littlewood, Phys. Rev. B 72, 094417 (2005).
  33. V. Guttal and D. Stroud, Phys. Rev. B 71, 201304 2005.

© Российская академия наук, 2024

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах