Ionization transition rates in the intermediate regime of the Keldysh parameter for a (0,1)*LG spiral amplitude modulated laser field

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The mechanisms of the tunnel and multiphoton ionization transitions of hydrogen-like atoms and noble gas atoms are discussed. Atoms potassium and argon, with ionization energy of 4.34 and 15.76 eV, were chosen as the target. The atoms are exposed to Ti:Sapphire, (0,1)*LG, spiral amplitude modulated, laser beam at λ = 800 nm wavelength in a broad intensity range 1012 to 1015 W/cm2. The computational approach to describe tunnel and multiphoton processes was based on using the ADK theory. Stark and ponderomotive effects are also included to study their influence on the transition rate. Obtained results show that, for the lower γ values, the contribution of multiphoton ionization was less significant than the tunnel ionization contribution. In comparison, for higher γ values, multiphoton ionization dominated over tunnel ionization in a total transition rate. It is found that, in this particular case of spiral amplitude modulated mode, the intermediate regime, where both processes equally contribute, strongly depends on the atom selection and laser field intensity. Ionization in the intermediate regime occurs for γ ≈ 10 and 12 for low laser intensities, as γ ≈ 2 and 2.5 for the higher values, in the case of potassium and argon respectively. Our analysis indicated that the Stark and ponderomotive effects have a significant influence on the total transition rate. It is shown that these effects decrease the transition rate value and move the intermediate regime’s position toward lower values of the γ parameter, mainly in the case of higher laser field intensity.

Об авторах

T. B Miladinović

University of Kragujevac

Email: jetp@kapitza.ras.ru
34000, Kragujevac, Serbia

S. Simić

Faculty of Science, University of Kragujevac

Email: jetp@kapitza.ras.ru
34000, Kragujevac, Serbia

N. Danilović

Faculty of Science, University of Kragujevac

Автор, ответственный за переписку.
Email: jetp@kapitza.ras.ru
34000, Kragujevac, Serbia

Список литературы

  1. M. Hollstein and D. Pfannkuche, Phys. Rev. A 92, 053421 (2015).
  2. K. Hu¨tten, M. Mittermair, S. O. Stock, R. Beerwerth, V. Shirvanyan, J. Riemensberger, A. Duensing, R. Heider, M. S. Wagner, A. Guggenmos, S. Fritzsche, N. M. Kabachnik, R. Kienberger, and B. Bernhardt, Nat.Commun. 9, 719 (2018).
  3. G. Mainfray and G. Manus, Rep. Prog. Phys. 54, 1333 (1991).
  4. A. Sharma, M. N. Slipchenko, M. N. Shneider, X. Wang, K. A. Rahman, and A. Shashurin, Sci. Rep. 8, 2874 (2018).
  5. M. V. Ammosov, P. A. Golovinsky, I. Yu. Kiyan, V. P. Krainov, and V. M. Ristic, J. Opt. Soc. Am. B 9, 1225 (1992).
  6. V. S. Popov, Phys. Usp. 47, 855 (2004).
  7. L. V. Keldysh, Sov. Phys. JETP 20, 1307 (1965).
  8. A. M. Perelomov, V. S. Popov, and M. V. Terent'ev, Sov. Phys. JETP 23, 924 (1966).
  9. M. V. Ammosov, N. B. Delone, and V. P. Krainov, Sov. Phys. JETP 64, 1191 (1986).
  10. H. R. Reiss, Phys. Rev. A 75, 031404 (2007).
  11. X. Hao, Z. Shu, W. Li, S. Hu, and J. Chen, Opt. Express 24, 25250 (2016).
  12. D. T. Lloyd, K. O'Kee e, and S. M. Hooker, Opt. Express 27, 6925 (2019).
  13. R. Wang, Q. Zhang, D. Li, S. Xu, P. Cao, Y. Zhou, W. Cao, and P. Lu, Opt. Express 27, 6471 (2019).
  14. N. I. Shvetsov-Shilovski, D. Dimitrovski, and L. B. Madsen, Phys. Rev. A 85, 023428 (2012).
  15. H. Wabnitz, A. R. B. de Castro, P. Gu¨rtler, T. Laarmann, W. Laasch, J. Schulz, and T. Mo¨ller, Phys. Rev. Lett. 94, 023001 (2005).
  16. A. A. Sorokin, S. V. Bobashev, T. Feigl, K. Tiedtke, H. Wabnitz, and M. Richter, Phys. Rev. Lett. 99, 213002 (2007).
  17. T. Topcu and F. Robicheaux, Phys. Rev. A 86, 053407 (2012).
  18. C. Wang, X. Lai, Z. Hu, Y. Chen, W. Quan, H. Kang, C. Gong, and X. Liu, Phys. Rev. A 90, 013422 (2014).
  19. Y. H. Lai, J. Xu, U. B. Szafruga, B. K. Talbert, X. Gong, K. Zhang, H. Fuest, M. F. Kling, C. I. Blaga, P. Agostini, and L. F. DiMauro, Phys. Rev. A 96, 063417 (2017).
  20. L. Guo, S. L. Hu, M. Q. Liu, Z. Shu, X. W. Liu, J. Li, W. F. Yang, R. H. Lu, S. S. Han, and J. Chen, ArXiv: Atomic Physics (2019).
  21. H. Moradi, V. Shahabadi, E. Madadi, E. Karimi, and F. Hajizadeh, Opt. Express 27, 7266 (2019).
  22. S. S. Stafeev, L. O'Faolain, M. I. Shanina (Kotlyar), A. G. Nalimov, and V. V. Kotlyar, Computer Optics 38, 606 (2014).
  23. T. Grosjean, D. Courjon, and C. Bainier, Opt. Lett. 32, 976 (2007).
  24. C. Varin, S. Payeur, V. Marceau, S. Fourmaux, April, B.‘Schmidt, P-L Fortin, N. Thire', T. Brabec, F. Le'gare', J-C. Kie er, and M. Piche', Appl. Sci. 3, 70 (2013).
  25. M. Wen, Y. I. Salamin, and C. H. Keitel, Opt. Express 27 18958 (2019).
  26. D. J. Armstrong, M. C. Phillips, and A. V. Smith, Appl. Opt. 42, 3550 (2003).
  27. G. Machavariani, N. Davidson, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, New Methods of Mode Conversion and Brightness Enhancement in High-Power Lasers, in: Proceedings of the Lasers and Electro-Optics and the International Quantum Electronics Conference, Munich, 17 - 22 June (2007).
  28. J. Ouyang, W. Perrie, O. J. Allegre, T. Heil, Y. Jin, E. Fearon, D. Eckford, S. P. Edwardson, and G. Dearden, Opt. Express 23, 12562 (2015).
  29. G. S. Voronov and N. B. Delone, Sov. Phys. JETP 23, 54 (1966).
  30. M. Uiberacker, Th. Uphues, M. Schultze, A. J. Verhoef, V. Yakovlev, M. F. Kling, J. Rauschenberger, N. M. Kabachnik, H. Schro¨der, M. Lezius, K. L. Kompa, H.-G. Muller, M. J. J. Vrakking, S. Hendel, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, Nature 446, 627 (2007).
  31. R. Boge, C. Cirelli, A. S. Landsman, S. Heuser, A. Ludwig, J. Maurer, M. Weger, L. Gallmann, and U. Keller, Phys. Rev. Lett. 111, 103003 (2013).
  32. N. B. Delone, and V. P. Krainov, Physics-Uspekhi 42, 669 (1999).
  33. A. Bunjac, D. B. Popovic, and N. S. Simonovic, ArXiv: Atomic Physics (2019).
  34. J. Mitroy, M. S. Safronova, and Ch. W. Clark, J. Phys. B: At., Mol. Opt. Phys. 43, 20201 (2010).
  35. A. Karamatskou, J. Phys. B: At. Mol. Opt. Phys. 50, 013002 (2017).
  36. B. Yang, K. J. Schafer, B. Walker, K. C. Kulander, L. F. DiMauro, and P. Agostini, Acta Phys. Pol. A 86, 41 (1994).
  37. E. A. Volkova, A.M. Popov, and O. V. Tikhonova, J. Exp. Theor. Phys. 113, 394 (2011).
  38. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
  39. M. Yao and M. J. Padgett, Adv. Opt. Photon. 3, 161 (2011).
  40. M. Uchida and A. Tonomura, Nature 464, 737 (2010).
  41. S. P. Goreslavsky, N. B. Narozhny, and V. P. Yakovlev, J. Opt. Soc. Am. B 46, 1752 (1989).
  42. F. Gori, J. Opt. Soc. Am. A. 18, 1612 (2001).
  43. J. D. Lawrence, A Catalog of Special Plane Curves, Dover, New York (1972).
  44. D. K. Cheng, Field and Wave Electromagnetics, Addison-Wesley Publishing Company (1989).
  45. M. J. Padgett and L. Allen. Contemp. Phys. 41, 275 (2000).
  46. R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
  47. K. M. Tanvir Ahmmed, C. Grambow, and A. M. Kietzig, Micromachines 5, 1219 (2014).

© Российская академия наук, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах