Антиферромагнетик с анизотропией типа "легкая плоскость" в наклонном поле: щель в спектре магнонов и восприимчивость

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

С учетом недавних экспериментальных данных по веществу дихлор-тетракистиомочевина-никель (DTN) [Soldatov et al., Phys. Rev. B 101, 104410 (2020)] рассмотрена модель антиферромагнетика с одноионной анизотропией типа «легкая плоскость» на тетрагональной решетке в наклонном внешнем магнитном поле. Используя малость поперечной компоненты поля, мы аналитически рассматриваем полевую зависимость щели в «акустической» магнонной моде и поперечной однородной магнитной восприимчивости в упорядоченной фазе. Было показано, что щель имеет немонотонную зависимость от поля из-за квантовых флуктуаций, что действительно наблюдалось экспериментально. Поперечная восприимчивость, по существу, зависит от времени распада «оптического» магнона на два других магнона. При магнитных полях, близких к соответствующему центру упорядоченной фазы, это приводит к экспериментально наблюдаемому явлению динамического диамагнетизма.

Об авторах

А. С Щербаков

Научно-исследовательский центр «Курчатовский Институт»

Email: nanoscienceisart@gmail.com

О. И Утесов

Научно-исследовательский центр «Курчатовский Институт»;Санкт-Петербургский государственный университет;НИУ «Высшая школа экономики»

Email: utiosov@gmail.com

Список литературы

  1. S. Sachdev, Quantum Phase Transitions, 2nd ed., Cambridge University Press (2011).
  2. F. Mila, European J. Phys. 21, 499 (2000).
  3. T. Giamarchi, C. Ruegg, and O. Tchernyshyov, Nature Phys. 4, 198 (2008).
  4. A. Zheludev and T. Roscilde, Comptes Rendus Phys. 14, 740 (2013).
  5. A. Oosawa and H. Tanaka, Phys.Rev.B 65, 184437 (2002).
  6. R. Yu, L. Yin, N. S. Sullivan et al., Nature 489, 379 (2012).
  7. D. Huvonen, S. Zhao, M. Mansson, T. Yankova et al., Phys.Rev.B 85, 100410 (2012).
  8. M. P. Fisher, P.B. Weichman, G. Grinstein et al., Phys.Rev.B 40, 546 (1989).
  9. L. Pollet, N.V. Prokof'ev, B.V. Svistunov et al., Phys.Rev.Lett. 103, 140402 (2009).
  10. A. Paduan-Filho, X. Gratens, and N.F. Oliveira, Phys.Rev.B 69, 020405 (2004).
  11. S.A. Zvyagin, J. Wosnitza, C.D. Batista et al., Phys. Rev.B 85, 047205 (2007).
  12. A.V. Sizanov and A.V. Syromyatnikov, J. Phys.: Cond.Matt. 23, 146002 (2011).
  13. A.V. Sizanov and A.V. Syromyatnikov, Phys.Rev.B 84, 054445 (2011).
  14. K.Y. Povarov, A. Mannig, G. Perren et al., Phys. Rev.B 96, 40414 (2017).
  15. A. Orlova, H. Mayaffre, S. Kramer et al., Phys.Rev. Lett. 121, 177202 (2018).
  16. V. S. Zapf, D. Zocco, B.R. Hansen et al., Phys.Rev. Lett. 96, 077204 (2006).
  17. E. Batyev and L. Braginsky, Sov.Phys. JETP 69, 781 (1984).
  18. E. Batyev, Sov.Phys. JETP 62, 173 (1985).
  19. L. Yin, J. S. Xia, V. S. Zapfet al., Phys.Rev.Lett. 101, 187205 (2008).
  20. S.A. Zvyagin, J. Wosnitza, A.K. Kolezhuk, et al., Phys.Rev.B 77, 092413 (2008).
  21. T.A. Soldatov, A. I. Smirnov, K.Y. Povarov et al., Phys.Rev.B 101, 104410 (2020).
  22. A. S. Sherbakov and O. I. Utesov, J.Magn.Magn. Mater 518, 167390 (2021).
  23. A. Lopez-Castro and M.R. Truter, J.Chem. Soc. 245, 1309 (1963).
  24. T. Holstein and H. Primakoff, Phys.Rev. 58, 1098 (1940).
  25. C. J. Hamer, O. Rojas, and J. Oitmaa, Phys.Rev. 81, 214424 (2010).
  26. A.V. Sizanov and A.V. Syromyatnikov, Phys.Rev.B 84, 054445 (2011).
  27. V.N. Glazkov, JETP Lett. 112, 647 (2020).

© Российская академия наук, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах