Journal of Experimental and Theoretical Physics
ISSN (print): 0044-4510
Media registration certificate: PI No. FS 77 - 78167 dated 03/27/2020
Founder: Russian Academy of Sciences, Institute of Physical Problems named after. P.L. Kapitsa RAS
Editor-in-Chief: Smirnov Alexander Ivanovich
Number of issues per year: 6
Indexation: RISC, list of Higher Attestation Commissions, CrossRef, White List (level 2)
Ағымдағы шығарылым
Том 168, № 5 (2025)
ATOMS, MOLECULES, OPTICS
KOGERENTNOE TUNNELIROVANIE PRI ADIABATIChESKOM PROKhOZhDENII SVETA V INTEGRAL'NYKh VOLNOVODNYKh STRUKTURAKh IZ NITRIDA KREMNIYa
Аннотация
593-602
POVERKhNOSTNYE ELEKTROMAGNITNYE VOLNY NA GRANITsE DVUKh DIELEKTRIKOV S ZERKAL'NO-SIMMETRIChNYMI SEChENIYaMI POVERKhNOSTEY POKAZATELEY PRELOMLENIYa
Аннотация
603-612
MNOGOELEKTRONNAYa IONIZATsIYa TYaZhELYKh I SVERKhTYaZhELYKh ATOMOV PRI STOLKNOVENII S MNOGOZARYaDNYMI IONAMI
Аннотация
613-623
TENZOR ENERGII-IMPUL'SA ELEKTROMAGNITNOGO POLYa V SREDE S ChASTOTNOY DISPERSIEY VTOROGO PORYaDKA
Аннотация
624-630
NUCLEI, PARTICLES, FIELDS, GRAVITY AND ASTROPHYSICS
SKALYaRNO-GRAVITATsIONNAYa NEUSTOYChIVOST' I EE ASTROFIZIChESKIE PRILOZhENIYa
Аннотация
631-648
ORDER, DISORDER AND PHASE TRANSITIONS IN CONDENSED MATTER
VLIYaNIE 2D-NEODNORODNOSTEY VELIChINY MAGNITNOY ANIZOTROPII NA FERROMAGNITNYY REZONANS V TONKOY PLENKE
Аннотация
649-665
Vliyanie vneshnego magnitnogo polya na dinamicheskie i staticheskie svoystva anizotropnogo negeyzenbergovskogo magnetika so spinom S = 1
Аннотация
666-675
MODELIROVANIE MAGNITNYKh SVOYSTV I ELEKTRONNOY STRUKTURY SPLAVOV GEYSLERA So–Cu–Mn–Al
Аннотация
676-681
MAGNITNYY PEREKhOD V SISTEMAKh NA OSNOVE ε-Fe2O3 S RAZLIChNYM RASPREDELENIEM NANOChASTITs PO RAZMERAM
Аннотация
682-691
ELECTRONIC PROPERTIES OF SOLIDS
ANOMALY OF CRYSTAL LATTICE THERMAL EXPANSION AND BULK MODULUS BEHAVIOR OF δ-PLUTONIUM
Аннотация
Anomalous behavior of thermal expansion and bulk modulus for the face centered cubic phase of metallic plutonium is considered proceeding from the valence-fluctuating nature of the Pu 5f electrons. It is shown that the approach based on the fundamental properties of the systems the ground state of which is a quantum-mechanical superposition of the localized and itinerant electron configurations allows to quantitatively describe temperature dependence of the crystal lattice parameters and bulk moduli for both gallium-stabilized Pu-Ga alloy with fcc structure and unalloyed δ-Pu within the fcc phase existence region.
692-699
STATISTICAL AND NONLINEAR PHYSICS, PHYSICS OF "SOFT" MATTER
RELYaTIVISTSKIY ELEKTRODINAMIChESKIY EFFEKT V KLASSIChESKOY PLAZME TOKAMAKA — TEORIYa I EKSPERIMENTY
Аннотация
700-707
ELECTRON ACCELERATION VIA LOWER-HYBRID DRIFT INSTABILITY IN ASTROPHYSICAL PLASMAS: DEPENDENCE ON PLASMA BETA AND SUPRATHERMAL ELECTRON DISTRIBUTIONS
Аннотация
Density inhomogeneities are ubiquitous in space and astrophysical plasmas, particularly at magnetic reconnection sites, shock fronts, and within compressible turbulence. The gradients associated with these inhomogeneous plasma regions serve as free energy sources that can drive plasma instabilities, including the lower-hybrid drift instability (LHDI). Notably, lower-hybrid waves are frequently observed in magnetized space plasma environments, such as Earth's magnetotail and magnetopause. Previous studies have primarily focused on modeling particle acceleration via LHDI in these regions using a quasilinear approach. This study expands the investigation of LHDI to a broader range of environments, spanning weakly to strongly magnetized media, including interplanetary, interstellar, intergalactic, and intracluster plasmas. To explore the applicability of LHDI in various astrophysical settings, we employ two key parameters: (1) plasma magnetization, characterized by the plasma beta parameter, and (2) the spectral slope of suprathermal electrons following a power-law distribution. Using a quasilinear model, we determine the critical values of plasma beta and spectral slope that enable efficient electron acceleration via LHDI by comparing the rate of growth of instability and the damping rate of the resulting fluctuations. We further analyze the time evolution of the electron distribution function to confirm these critical conditions. Our results indicate that electron acceleration is generally most efficient in low-beta plasmas (β<1). However, the presence of suprathermal electrons significantly enhances electron acceleration via LHDI, even in high-beta plasmas (β>1). Finally, we discuss the astrophysical implications of our findings, highlighting the role of LHDI in electron acceleration across diverse plasma environments.
708-719
MODULI UPRUGOSTI GOLUBYKh FAZ KhOLESTERIChESKIKh ZhIDKIKh KRISTALLOV SO SLABOY KIRAL'NOST'Yu
Аннотация
720-733

