SEARCH FOR BOUND STATES IN A ONE-DIMENSIONAL QUANTUM SYSTEM USING THE POWER METHOD: PRACTICAL IMPLEMENTATION

Capa

Citar

Resumo

For numerical solution of the time-dependent Schrödinger equation describing the electron evolution in a given potential interacting with the high-intensity ultrashort pulse field, one has to find bound states of this potential with high accuracy. The paper considers the application of power algorithm using Chebyshev operator polynomials to search for bound states of one-dimensional quasi-Coulomb potential. The algorithm convergence improves with increasing polynomial degree m, saturating at m ≥ 8. For such degree, the ground state is found in ~103 Hamiltonian calculation operations, while higher states require ~105 operations (several seconds and several minutes respectively).

Sobre autores

N. Vrublevskaya

Faculty of Physics, Lomonosov Moscow State University; Lebedev Physical Institute of the Russian Academy of Sciences

Email: schipilo.daniil@physics.msu.ru
Rússia, 119991, Moscow; 119991, Moscow

D. Shipilo

Faculty of Physics, Lomonosov Moscow State University; Lebedev Physical Institute of the Russian Academy of Sciences

Email: schipilo.daniil@physics.msu.ru
Rússia, 119991, Moscow; 119991, Moscow

P. Ilyushin

Faculty of Physics, Lomonosov Moscow State University; Lebedev Physical Institute of the Russian Academy of Sciences

Email: schipilo.daniil@physics.msu.ru
Rússia, 119991, Moscow; 119991, Moscow

I. Nikolaeva

Faculty of Physics, Lomonosov Moscow State University; Lebedev Physical Institute of the Russian Academy of Sciences

Email: schipilo.daniil@physics.msu.ru
Rússia, 119991, Moscow; 119991, Moscow

O. Kosareva

Faculty of Physics, Lomonosov Moscow State University; Lebedev Physical Institute of the Russian Academy of Sciences

Email: schipilo.daniil@physics.msu.ru
Rússia, 119991, Moscow; 119991, Moscow

N. Panov

Faculty of Physics, Lomonosov Moscow State University; Lebedev Physical Institute of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: schipilo.daniil@physics.msu.ru
Rússia, 119991, Moscow; 119991, Moscow

Bibliografia

  1. C. Eckart, Phys.Rev. 35, 1303 (1930).
  2. J. Javanainen, J.H. Eberly, and Q. Su, Phys. Rev.A 38, 3430 (1988).
  3. Е.А. Волкова, А.М. Попов, ЖЭТФ 106, 735 (1994).
  4. A.Popov, O.Tikhonova, and E.Volkova, J.Phys.B 32, 3331 (1999).
  5. M. Kolesik, J.M. Brown, A. Teleki, P. Jakobsen, J.V. Moloney, and E.M. Wright, Optica 1, 323 (2014).
  6. A. Bogatskaya, E. Volkova, and A. Popov, Europhys. Lett. 116, 14003 (2016).
  7. J. Cooley, Math.Comp. 15, 363 (1961).
  8. J. F. Van der Maelen Ur´ıa, S. Garc´ıa-Granda, and A. Men´endez-Vel´azquez, Amer. J.Phys. 64, 3 (1996).
  9. R. Kosloff and H. Tal-Ezer, Chem.Phys. Lett. 127, 223 (1986).
  10. M. Feit, J. Fleck, Jr., and A. Steiger, J.Comput.Phys. 47, 412 (1982).
  11. Р.П. Федоренко. Введение в вычислительную физику: Учебное пособие для вузов, под ред. А.И. Лобанова, Издательский дом «Интеллект», Долгопрудный (2008).
  12. X. Antoine, A. Arnold, C. Besse, M. Ehrhardt, and A. Sch¨adle, Commun.Comput.Phys. 4, 729 (2008).
  13. X. Antoine, C. Besse, M. Ehrhardt, and P. Klein, Modeling Boundary Conditions for Solving Stationary Schr¨odinger Equations, Preprint 10/04 of the Chairs of Applied Mathematics & Numerical Analysis and Optimization and Approximation, University of Wuppertal, February (2010).
  14. M. Nurhuda and A. Rouf, Phys.Rev.E 96, 033302 (2017).
  15. Л.Д. Ландау, Е.М. Лифшиц, Квантовая механика: Нерелятивистская теория, Наука, Москва (1989).
  16. Н. Врублевская, Д.Шипило, И. Николаева, H. Панов, O. Косарева, Письма в ЖЭТФ 117, 400 (2023).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).