JOSEPHSON BIFURCATION READOUT: BEYOND THE MONOCHROMATIC APPROXIMATION

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We analyze properties of bifurcation quantum detectors based on weakly nonlinear superconducting resonance circuits, in particular, with application to quantum readout. The developed quantitative description demonstrates strong influence of higher harmonics on their characteristics. While this effect is relevant for various circuits, including the conventional Josephson bifurcation amplifier and the parametrically driven circuit, we first focus on the period-doubling bifurcation under a force driving. This kind of bifurcation is due to nominally quadratic nonlinearity, which enables parametric down-conversion of the driving signal at nearly double resonance frequency to the basic mode. We analyze the effect of higher harmonics on the dynamics of the basic mode, inherent in a nonlinear circuit, which in our case is based on a Josephson junction with a sinusoidal current-phase relation as the origin of nonlinearity. We demonstrate that effects beyond the monochromatic approximation significantly modify the bare characteristics and evaluate their contribution. Due to high sensitivity of this circuit to small variations of parameters, it can serve as an efficient detector of the quantum state of superconducting qubits.

Sobre autores

Yu. Makhlin

Condensed-Matter Physics Laboratory, HSE University; Landau Institute for Theoretical Physics

Moscow, Russia; Chernogolovka, Russia

A. Zorin

Department of Physics, Lomonosov Moscow State University

Moscow, Russia

Bibliografia

  1. R. Vijay, M. H. Devoret, and I. Siddiqi, Rev. Sci. Instrum. 80, 111101 (2009).
  2. R. W. Boyd, Nonlinear Optics, Academic Press, Orlando (2008).
  3. L. D. Landau and E. M. Lifshitz, Mechanics, Course of Theoretical Physics, vol. 1, Pergamon Press (1969).
  4. I. Siddiqi, R. Vijay, F. Pierre, C. M. Wilson, M. Metcalfe, C. Rigetti, L. Frunzio, and M. H. Devoret, Phys. Rev. Lett. 93, 207002 (2004).
  5. I. Siddiqi, R. Vijay, M. Metcalfe, E. Boaknin, L. Frunzio, R. J. Schoelkopf, and M. H. Devoret, Phys. Rev. B 73, 054510 (2006).
  6. N. Boulant, G. Ithier, P. Meeson, F. Nguyen, D. Vion, D. Esteve, I. Siddiqi, R. Vijay, C. Rigetti, F. Pierre, and M. Devoret, Phys. Rev. B 76, 014525 (2007).
  7. F. Mallet, F. R. Ong, A. Palacios-Laloy, F. Nguyen, P. Bertet, D. Vion, and D. Esteve, Nature Phys. 5, 791 (2009).
  8. K. Kakuyanagi, S. Kagei, R. Koibuchi, S. Saito, A. Lupaşcu, K. Semba, and H. Nakano, New J. Phys. 15, 043028 (2013).
  9. V. Schmitt, X. Zhou, K. Juliusson, B. Royer, A. Blais, P. Bertet, D. Vion, and D. Esteve, Phys. Rev. A 90(6), 062333 (2014).
  10. S. Boutin, P. L. S. Lopes, A. Mu, U. C. Mendes, and I. Garate, J. Appl. Phys. 129, 214302 (2021).
  11. M. Metcalfe, E. Boaknin, V. Manucharyan, R. Vijay, I. Siddiqi, C. Rigetti, L. Frunzio, R. J. Schoelkopf, and M. H. Devoret, Phys. Rev. B 76, 174516 (2007).
  12. A. B. Zorin and Yu. Makhlin, Phys. Rev. B 83, 224506 (2011).
  13. A. B. Zorin, Phys. Rev. Applied 6, 034006 (2016).
  14. N. E. Frattini, U. Vool, S. Shankar, A. Narla, K. M. Sliwa, and M. H. Devoret, Appl. Phys. Lett. 110, 222603 (2017).
  15. K. E. Porsch, Exploring the period doubling bifurcation in a superconducting resonator, Phd Thesis, Royal Holloway, University of London (2017).
  16. V. V. Sivak, N. E. Frattini, V. R. Joshi, A. Lingenfelter, S. Shankar, and M. H. Devoret, Phys. Rev. Applied 11(5), 054060 (2019).
  17. M. I. Dykman, C. M. Maloney, V. N. Smelyanskiy, and M. Silverstein, Phys. Rev. E 57, 5202 (1998).
  18. M. I. Dykman, in Applications of Nonlinear Dynamics, ed. by V. In, P. Longhini, and A. Palacios, Springer, Berlin (2000), p. 367.
  19. C. M. Wilson, T. Duty, M. Sandberg, F. Persson, V. Shumeiko, and P. Delsing, Phys. Rev. Lett. 105, 233907 (2010).
  20. G. Ithier, Manipulation, Readout and Analysis of the Decoherence of a Superconducting Quantum Bit, Phd Thesis, Université Paris 6 (2005).
  21. B. A. Kochetov and A. Fedorov, Phys. Rev. B 92, 224304 (2015).
  22. D. Shiri, H. R. Nilsson, P. Telluri, A. F. Roudsari, V. Shumeiko, C. Fager, and P. Delsing, Modeling and Harmonic Balance Analysis of Parametric Amplifiers for Qubit Read-Out (2023), arXiv:2306.05177.
  23. V. V. Migulin, V. I. Medvedev, E. R. Mustel, and V. N. Parygin, Basic Theory of Oscillations, Mir, Moscow (1983).
  24. J. J. Stoker, Nonlinear Vibrations in Mechanical and Electrical Systems, Interscience Publishers Inc. (1950).
  25. P. L. Kapitza, ZhETF 21, 588 (1951) [English translation in Ref. [27, p.714]].
  26. P. L. Kapitza, Usp. Fiz. Nauk 44, 7 (1951) [English translation in Ref. [27, p.726]].
  27. Collected papers of P.L. Kapitza, Vol. 2, ed. by D. Ter Haar, Pergamon Press, Oxford (1965).
  28. V. I. Arnold, Mathematical Understanding of Nature: Essays on Amazing Physical Phenomena and Their Understanding by Mathematicians, American Mathematical Society (2014).
  29. T. Duty, G. Johansson, K. Bladh, D. Gunnarsson, C. Wilson, and P. Delsing, Phys. Rev. Lett. 95, 206807 (2005).
  30. M. A. Sillanpää, T. Lehtinen, A. Paila, Yu. Makhlin, L. Roschier, and P. J. Hakonen, Phys. Rev. Lett. 95, 206806 (2005).
  31. K. K. Likharev, Dynamics of Josephson Junctions and Circuits, Gordon and Breach, New York (1986).
  32. D. E. McCumber, J. Appl. Phys. 39, 3113 (1968).
  33. W. C. Stewart, Appl. Phys. Lett. 12, 277 (1968).
  34. M. Tinkham, Introduction to Superconductivity, Dover, New York (2004).
  35. A. Barone and G. Paterno, Physics and Applications of the Josephson Effect, John Wiley and Sons, New York (1982).
  36. Fundamentals and Technology of SQUIDs and SQUID Systems, The SQUID Handbook, vol. 1, ed. by J. Clarke and A. I. Braginski, Wiley-VCH, Weinheim (2004).
  37. A. B. Zorin, Appl. Phys. Lett. 118(22), 222601 (2021).
  38. A. H. Nayfeh, J. Sound Vib. 96(3), 333–340 (1984).
  39. A. Miano, G. Liu, V. V. Sivak, N. E. Frattini, V. R. Joshi, W. Dai, L. Frunzio, and M. H. Devoret, Appl. Phys. Lett. 120, 184002 (2022).
  40. M. Khabipov, V. Gaydamachenko, C. Kissling, R. Dolata, and A. B. Zorin, Supercond. Sci. Technol. 35, 065020 (2022).
  41. M. Khabipov, private communication (2018).
  42. D. M. Pozar, Microwave Engineering, John Wiley and Sons, New York (2012).

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies