GENERALIZED DYNAMICAL KELDYSH MODEL
- Autores: Kuchinskiy E.Z1, Sadovskiy M.V1
-
Afiliações:
- Institute for Electrophysics, Russian Academy of Sciences, Ural Branch
- Edição: Volume 166, Nº 1 (2024)
- Páginas: 45-62
- Seção: Articles
- URL: https://journals.rcsi.science/0044-4510/article/view/261664
- DOI: https://doi.org/10.31857/S004445102407006X
- ID: 261664
Citar
Resumo
We consider a certain class of exactly solvable models, describing spectral properties an electron moving in random in time external field with different statistical characteristics. This electron can be band – like or belong to a quantum well. The known dynamical Keldysh model is generalized for the case of fields with finite correlation time of fluctuations and for finite transfer frequencies of these fluctuations. In all cases we are able to perform the complete summation of all Feynman diagrams of corresponding perturbation series for the Green’s function. This can be done either by the reduction of this series to some continuous fraction or by the use of the generalized Ward identity from which we can derive recurrence relations for the Green’s function. In the case of a random field with finite transferred frequency there appear the interesting effects of modulation of spectral density and density of states.
Dedicated to 130-th anniversary of Pyotr Leonidovich Kapitza
Sobre autores
E. Kuchinskiy
Institute for Electrophysics, Russian Academy of Sciences, Ural Branch
Email: kuchinsk@iep.uran.ru
Rússia, Amundsen str. 106, Ekaterinburg 620016
M. Sadovskiy
Institute for Electrophysics, Russian Academy of Sciences, Ural Branch
Autor responsável pela correspondência
Email: sadovski@iep.uran.ru
Rússia, Amundsen str. 106, Ekaterinburg 620016
Bibliografia
- Л. Д. Ландау, Е. М. Лифшиц, Механика, Наука, Москва (1973).
- С. М. Рытов, Введение в статистическую радиофизику, Наука, Москва (1966).
- Б. Р. Левин, Теоретические основы статистической радиотехники, Советское радио, Москва (1969).
- L. V. Keldysh, Semiconductors in Strong Electric Field, Dr. Sci. Thesis, Lebedev Institute, Moscow, 1965.
- A. L. Efros, Theory of the electron states in heavily doped semiconductors, Zh. Eksp. Teor. Fiz. 59, 880 (1970) Sov. Phys. JETP 32, 479 (1971).
- M. V. Sadovskii. ‘Diagrammatics, World Scientific, Singapore, 2nd ed., 2019.
- M. V. Sadovskii. A model of a disordered system (A contribution to the theory of «liquid semiconductors»). Sov. Phys. JETP 39, 845 (1974).
- M.V. Sadovskii. Quasione-dimensional systems undergoing a Peierls transition. Sov. Phys. Solid State 16, 1632 (1974),
- W. Wonneberger and R. Lautenschlager, Theory of Infrared Absorption of Linear Conductors, J. Phys. C: Solid State Phys. 9, 2865 (1976).
- W. Wonneberger, Infrared Absorption of Incommensurate Linear Condictors, J. Phys. C: Solid State Phys. 10, 1073 (1977).
- M. V. Sadovskii. Exact Solution for the Density of Electronic States in a Model of a Disordered System, Sov. Phys.JETP 50, 989 (1979),
- M. V. Sadovskii and A. A. Timofeev, The Two-Particle Green Function in a Model of a One-Dimensional Disordered System: An Exact Solution?, J. Moscow Phys. Soc. 1, 391 (1991).
- J. Schmalian, D. Pines, and B. Stojkovic, Weak Pseudogap Behavior in the Underdoped Cuprate Superconductors, Phys. Rev. Lett. 80, 3839 (1998).
- J. Schmalian, D. Pines, and B. Stojkovic, Microscopic Theory of Weak Pseudogap Behavior in the Underdoped Cuprate Superconductors: General Theory and Quasiparticle Properties, Phys. Rev. B 60, 667 (1999).
- E. Z. Kuchinskii and M.V. Sadovskii, Models of the Pseudogap State of Two-Dimensional Systems, JETP 88, 968 (1999).
- M.V. Sadovskii. Pseudogap in HighTemperature Superconductors, Physics–Uspekhi 44, 515 (2001).
- M. V. Sadovskii, Models of the Pseudogap State in High-Temperature Superconductors, ArXiv:cond-mat/0408489.
- M. N. Kiselev and K. Kikoin, Scalar and Vector Keldysh Models in the Time Domain, JETP Letters, 89, 133 (2009).
- D. V. Efremov and M. N. Kiselev, Seven Etudes on Dynamical Keldysh model, SciPost Phys. Lect. Notes 65, doi: 10.21468/SciPostPhysLectNotes65.
- A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics, Prentice-Hall, Englewood Cliffs, NJ, (1963).
- E.Z. Kuchinskii, M.V. Sadovskii, Combinatorics of Feynman Diagrams for the Problems With Gaussian Random Field, JETP 113, 664 (1999).
- E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, Pseudogaps in Strongly Correlated Metals: Optical Conductivity within the Generalized Dynamical Mean-Field Theory Approach, Phys. Rev. B 75, 115102 (2007).
- T. Holstein, Studies of Polaron Motion, Ann. Phys. 8, 325 (1959); ibid 8, 343 (1959).
- I. G. Lang and Yu. A. Firsov. Kinetic Theory of Semiconductors with Low Mobility, Sov. Phys. JETP 16, 1301 (1963) .
- G. L. Goodvin, M. Berciu, and G. A. Sawatzky, The Green’s Function of the Holstein Polaron, Phys. Rev. B 74, 245104 (2006).
- J. J. Lee, F. T. Schmitt, R. G. Moore, S. Johnston, Y. T. Cui, W. Li, Z. K. Liu, M. Hashimoto, Y. Zhang, D. H. Lu, T. P. Devereaux, D. H. Lee, and Z. X. Shen, Interfacial Mode Coupling as the Origin of the Enhancement of Tc in Fese Films on SrTiO, Nature 515, 245 (2014).
- M.V. Sadovskii. High-Temperature Superconductivity in Fese Monolayers, Physics–Uspekhi 59, 947 (2016).
Arquivos suplementares
