Magnitoopticheskaya kerr-spektroskopiya nanokompozitov

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Magnetooptical spectroscopy is an effective method for studying the magnetic microstructure of homogeneous and heterogeneous magnets. This review is devoted to analysis of numerous factors affecting the intensity and spectral dependence of a magnetooptical signal of the equatorial Kerr effect in nanocomposites “ferromagnetic metal–dielectric” in the visible and near infrared spectral regions. Examples of the influence of the metal concentration, nanoparticle size and shape, the substrate, the material of the dielectric, the amorphization of grains, the deposition method, and other factors on the magnetooptical spectrum are considered. The differences in the magnetooptical spectra for the superparamagnetic, superferromagnetic, and ferromagnetic states are demonstrated. It is noted that in the presence of fractions with different field dependences of the magnetization in a nanocomposite, the magnetooptical signal is not proportional to the total magnetization. Examples of enhancement and sign inversion of the magnetooptical signal in nanocomposites are considered. The possibility of the description of magnetooptical spectra using the methods of the effective medium (the Bruggeman method and the Maxwell–Garnett symmetrized approximation) is discussed.

Sobre autores

E. Gan'shina

Physics Faculty, Moscow State University

Email: eagan@mail.ru
119991, Moscow, Russia

V. Garshin

Physics Faculty, Moscow State University

Email: eagan@mail.ru
119991, Moscow, Russia

N. Perova

Physics Faculty, Moscow State University

Email: eagan@mail.ru
119991, Moscow, Russia

I. Pripechenkov

Physics Faculty, Moscow State University

Email: eagan@mail.ru
119991, Moscow, Russia

A. Yurasov

Russian Technological University MIREA

Email: eagan@mail.ru
119454, Moscow, Russia

M. Yashin

Russian Technological University MIREA

Email: eagan@mail.ru
119454, Moscow, Russia

V. Ryl'kov

State Research Center “Kurchatov Institute”; Institute of Theoretical and Applied Electrodynamics, Russian Academy of Sciences

Email: eagan@mail.ru
123182, Moscow, Russia; 125412, Moscow, Russia

A. Granovskiy

Physics Faculty, Moscow State University; Institute of Theoretical and Applied Electrodynamics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: granov@magn.ru
119991, Moscow, Russia; 125412, Moscow, Russia

Bibliografia

  1. A. K. Zvezdin and V. A. Kotov, Modern Magnetooptics and Magnetooptical Materials, CRS Press (2020).
  2. Г. С. Кринчик, Физика магнитных явлений, МГУ (1985).
  3. V. Antonov, B. Harmon, and A. Yaresko, Electronic Structure and Magneto-Optical Properties of Solids, Kluver Acad. Publ., Dordrecht (2004).
  4. В. В. Рыльков, А. В. Емельянов, С. Н. Николаев и др., ЖЭТФ 158, 164 (2020).
  5. S. H. Ohnuma, H. Fujimori, S. Mitani et al., J. Appl. Phys. 79, 5130 (1996).
  6. M. N. Martyshov, A. V. Emelyanov, V. A. Demin et al., Phys. Rev. Appl. 14, 034016 (2020).
  7. C. N. Gao, Y. X. Yang, Y. Q. Xiong et al., J. Phys. D 47, 045003 (2014).
  8. S. Bedanta and W. Kleemann, J. Phys. D 42, 013001 (2009).
  9. G. A. Niklasson and C. G. Granqvist, J. Appl. Phys. 55, 3382 (1984).
  10. A. Granovsky, M. Kuzmichev, and J. P. Clerc, J. Phys. Soc. Jpn 23, 382 (1999).
  11. Е. А. Ганьшина, М. В. Вашук, А. Н. Виноградов и др., ЖЭТФ 125, 1172 (2004).
  12. A. Yurasov, M. Yashin, E. Gan'shina et al., J. Phys.: Conf. Ser. 1389, 012113 (2019), doi: 10.1088/1742-6596/1389/1/012113
  13. P. Sheng, Phys. Rev. Lett. 45, 60 (1980).
  14. A. Н. Юрасов, М. М. Яшин, Е. А. Ганьшина и др., Изв. РАН, сер. физ. 86, 716 (2022).
  15. A. B. Pakhomov, X. Yan, and B. Zhao, Appl. Phys. Lett. 67, 3497 (1995).
  16. A. Granovsky, A. Vedyaev, and F. Brouers, J. Magn. Magn. Mater. 136, 229 (1994).
  17. V. V. Ryl'kov, S. N. Nikolaev, K. Y. Chernoglazov et al., Phys. Rev. B 95, 144402 (2017).
  18. E. Gan'shina, V. Garshin, N. Perova et al., J. Magn. Magn. Mater. 470, 135 (2019).
  19. E. A. Gan'shina, A. B. Granovsky, V. V. Garshin et al., Spin 13, No. 02, 2340006 (2023), doi: 10.1142/S2010324723400064.
  20. E. Gan'shina, A. Granovsky, A. Sitnikov et al., IEEE Magn. Lett. 11, 2500504 (2020), doi: 10.1109/LMAG.2019.2963874.
  21. Е. А. Ганьшина, И. М. Припеченков, Н. Н. Перова и др., ФММ 24, 134 (2023).
  22. В. Е. Буравцова, Е. А. Ганьшина, В. С. Гущин и др., Изв. РАН, сер. физ. 67, 918 (2003).
  23. V. E. Buravtsova, E. A. Gan'shina, S. A. Kirov et al., Mater. Sci. Appl. 4, No. 4а (2013), doi: 10.4236/msa.2013.44A003.
  24. E. A. Gan'shina, V. V. Garshin, I. M. Pripechenkov et al., Nanomaterials 11, 1666 (2021).
  25. А. Н. Юрасов, М. М. Яшин, И. В. Гладышев и др, ПТЭ 9 (3), 49 (2021).
  26. М. М. Яшин, А. Н. Юрасов, Е. А. Ганьшина и др., Вестник МГТУ им. Н. Э. Баумана, сер. Естественные науки 86(5), 63 (2019).

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies