Finite Time Effects in Single and Double Compton Scattering

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The process of Compton scattering by a free electron with subsequent reemission of one or two photons is considered in the assumption of finite interaction time. The corresponding cross sections are obtained in the framework of relativistic quantum electrodynamics using a modified form of fermion propagator with complex transmitted momentum. It is shown that finite time effects can be observable at sufficiently low energies of scattered photons. The proposed method also regularizes arising infrared divergence in the cross section of the double Compton effect. Possible experimental verification of considered theoretical approach is discussed.

Sobre autores

V. Dubrovich

Special Astrophysical Observatory, St. Petersburg Branch, Russian Academy of Sciences

Email: t.zalialiutdinov@spbu.ru
196140, St. Petersburg

T. Zalyalyutdinov

Russia Department of Physics, St. Petersburg State University; Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”

Autor responsável pela correspondência
Email: t.zalialiutdinov@spbu.ru
Petrodvorets, 198504, St. Petersburg, Russia; 188300, St. Petersburg

Bibliografia

  1. D. V. Karlovets, J. High Energy Phys. 2017 (3), 49 (2017).
  2. D. Karlovets, J. Phys.: Conf. Ser. 938, 012031 (2017).
  3. D. Krebs, D. A. Reis, and R. Santra, Phys. Rev. A 99, 022120 (2019).
  4. K. Nomoto and R. Fukuda, Progress Theor. Phys. 86, 269 (1991).
  5. F. Mandl and T. Skyrme, Proc. Roy. Soc. London, Ser. A Math. Phys. Sci. 215, 497 (1952).
  6. J. F. Dawson and Z. Fried, Phys. Rev. D 1, 3363 (1970).
  7. J. Sucher, Phys. Rev. 107, 1448 (1957).
  8. G. L. Castro, J. L. M. Lucio, and J. Pestieau, Mod. Phys. Lett. A 6, 3679 (1991).
  9. G. L. Castro, J. L. M. Lucio, and J. Pestieau, Int. J. Mod. Phys. A 11, 563 (1996).
  10. M. Nowakowski and A. Pilaftsis, Z. Physik C Particles and Fields 60, 121 (1993).
  11. V. Kuksa, Adv. High Energy Phys. 2015, 490238 (2015).
  12. S. Weinberg, W. S, and T. de Campos, The Quantum Theory of Fields, Vol. 2: Modern Applications, Cambridge Univ. Press (1995).
  13. V. I. Kuksa, Phys. Particles Nuclei 45, 568 (2014).
  14. O. Y. Andreev, L. N. Labzowsky, G. Plunien, and D. A. Solovyev, Phys. Rep. 455, 135 (2008).
  15. T. A. Zalialiutdinov, D. A. Solovyev, L. N. Labzowsky, and G. Plunien, Phys. Rep. 737, 1 (2018).
  16. O. Klein and Y. Nishina, Z. Physik 52, 853 (1929).
  17. J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics, Mcgraw-Hill College (1964).
  18. J. M. Jauch and F. Rohrlich, The Relativistic Quantum Field Theory of Charged Particles with Spin One-half (Texts and Monographs in Physics), Springer, Berlin (1976).
  19. Л. П. Рапопорт, Б. А. Зон, Н. Л. Манаков, Теория многофотонных переходов в атомах, Атомиздат, Москва (1978).
  20. A. I. Akhiezer and V. B. Berestetskii, Quantum Electrodynamics, Wiley-Interscience, New York (1965).
  21. E. Milotti, Atom. Data Nucl. Data Tables 70(2), 137 (1998).
  22. V. Berestetskii, E. Lifshits, and L. Pitaevskii, Quantum Electrodynamics, Oxford Butterworth-Heinemann (1982).
  23. T. Heinzl and A. Ilderton, arXiv:1307.0406.
  24. J. Schwinger, L. Deraad, K. Milton, W. Tsai, and J. Norton, Classical Electrodynamics, Advanced Book Program, Avalon Publ. (1998).
  25. R. Mertig, M. B¨ohm, and A. Denner, Comp. Phys.Commun. 64, 345 (1991).
  26. V. Shtabovenko, R. Mertig, and F. Orellana, Comp. Phys.Commun. 7, 432 (2016).
  27. L. M. Brown and R. P. Feynman, Phys. Rev. 85, 231 (1952).
  28. A. Ravenni and J. Chluba, J. Cosmol. Astropart. Phys. 2020, 25 (2020).
  29. K. J. Mork, Phys. Rev. A 4, 917 (1971).
  30. L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, Pergamon Press (1965).
  31. V. Dubrovich and T. Zalialiutdinov, Physics 3, 1167 (2021).
  32. V. Dinu and G. Torgrimsson, Phys. Rev. D 99, 096018 (2019).
  33. V. Dinu, T. Heinzl, and A. Ilderton, Phys. Rev. D 86, 085037 (2012).
  34. F. Low, Phys. Rev. 88, 53 (1952).
  35. E. L¨otstedt and U. D. Jentschura, Phys. Rev. A 80, 053419 (2009).

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies