Finite Time Effects in Single and Double Compton Scattering

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The process of Compton scattering by a free electron with subsequent reemission of one or two photons is considered in the assumption of finite interaction time. The corresponding cross sections are obtained in the framework of relativistic quantum electrodynamics using a modified form of fermion propagator with complex transmitted momentum. It is shown that finite time effects can be observable at sufficiently low energies of scattered photons. The proposed method also regularizes arising infrared divergence in the cross section of the double Compton effect. Possible experimental verification of considered theoretical approach is discussed.

About the authors

V. K Dubrovich

Special Astrophysical Observatory, St. Petersburg Branch, Russian Academy of Sciences

Email: t.zalialiutdinov@spbu.ru
196140, St. Petersburg

T. A Zalyalyutdinov

Russia Department of Physics, St. Petersburg State University; Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”

Author for correspondence.
Email: t.zalialiutdinov@spbu.ru
Petrodvorets, 198504, St. Petersburg, Russia; 188300, St. Petersburg

References

  1. D. V. Karlovets, J. High Energy Phys. 2017 (3), 49 (2017).
  2. D. Karlovets, J. Phys.: Conf. Ser. 938, 012031 (2017).
  3. D. Krebs, D. A. Reis, and R. Santra, Phys. Rev. A 99, 022120 (2019).
  4. K. Nomoto and R. Fukuda, Progress Theor. Phys. 86, 269 (1991).
  5. F. Mandl and T. Skyrme, Proc. Roy. Soc. London, Ser. A Math. Phys. Sci. 215, 497 (1952).
  6. J. F. Dawson and Z. Fried, Phys. Rev. D 1, 3363 (1970).
  7. J. Sucher, Phys. Rev. 107, 1448 (1957).
  8. G. L. Castro, J. L. M. Lucio, and J. Pestieau, Mod. Phys. Lett. A 6, 3679 (1991).
  9. G. L. Castro, J. L. M. Lucio, and J. Pestieau, Int. J. Mod. Phys. A 11, 563 (1996).
  10. M. Nowakowski and A. Pilaftsis, Z. Physik C Particles and Fields 60, 121 (1993).
  11. V. Kuksa, Adv. High Energy Phys. 2015, 490238 (2015).
  12. S. Weinberg, W. S, and T. de Campos, The Quantum Theory of Fields, Vol. 2: Modern Applications, Cambridge Univ. Press (1995).
  13. V. I. Kuksa, Phys. Particles Nuclei 45, 568 (2014).
  14. O. Y. Andreev, L. N. Labzowsky, G. Plunien, and D. A. Solovyev, Phys. Rep. 455, 135 (2008).
  15. T. A. Zalialiutdinov, D. A. Solovyev, L. N. Labzowsky, and G. Plunien, Phys. Rep. 737, 1 (2018).
  16. O. Klein and Y. Nishina, Z. Physik 52, 853 (1929).
  17. J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics, Mcgraw-Hill College (1964).
  18. J. M. Jauch and F. Rohrlich, The Relativistic Quantum Field Theory of Charged Particles with Spin One-half (Texts and Monographs in Physics), Springer, Berlin (1976).
  19. Л. П. Рапопорт, Б. А. Зон, Н. Л. Манаков, Теория многофотонных переходов в атомах, Атомиздат, Москва (1978).
  20. A. I. Akhiezer and V. B. Berestetskii, Quantum Electrodynamics, Wiley-Interscience, New York (1965).
  21. E. Milotti, Atom. Data Nucl. Data Tables 70(2), 137 (1998).
  22. V. Berestetskii, E. Lifshits, and L. Pitaevskii, Quantum Electrodynamics, Oxford Butterworth-Heinemann (1982).
  23. T. Heinzl and A. Ilderton, arXiv:1307.0406.
  24. J. Schwinger, L. Deraad, K. Milton, W. Tsai, and J. Norton, Classical Electrodynamics, Advanced Book Program, Avalon Publ. (1998).
  25. R. Mertig, M. B¨ohm, and A. Denner, Comp. Phys.Commun. 64, 345 (1991).
  26. V. Shtabovenko, R. Mertig, and F. Orellana, Comp. Phys.Commun. 7, 432 (2016).
  27. L. M. Brown and R. P. Feynman, Phys. Rev. 85, 231 (1952).
  28. A. Ravenni and J. Chluba, J. Cosmol. Astropart. Phys. 2020, 25 (2020).
  29. K. J. Mork, Phys. Rev. A 4, 917 (1971).
  30. L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, Pergamon Press (1965).
  31. V. Dubrovich and T. Zalialiutdinov, Physics 3, 1167 (2021).
  32. V. Dinu and G. Torgrimsson, Phys. Rev. D 99, 096018 (2019).
  33. V. Dinu, T. Heinzl, and A. Ilderton, Phys. Rev. D 86, 085037 (2012).
  34. F. Low, Phys. Rev. 88, 53 (1952).
  35. E. L¨otstedt and U. D. Jentschura, Phys. Rev. A 80, 053419 (2009).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies