FERROMAGNETIC ORDER IN VAN-DER WAALS COMPOUND Fe3GeTe2
- Авторлар: Men'shenin V.V.1
-
Мекемелер:
- Federal State Budgetary Institution of Science M.N. Mikheev Institute of Metal Physics Ural Branch of the Russian Academy of Sciences
- Шығарылым: Том 165, № 3 (2024)
- Беттер: 389-395
- Бөлім: Articles
- URL: https://journals.rcsi.science/0044-4510/article/view/256497
- DOI: https://doi.org/10.31857/S0044451024030088
- ID: 256497
Дәйексөз келтіру
Аннотация
The phase transition from the paramagnetic to the ferromagnetic phase in a van der Waals volume Fe3GeTe2 compound was studied. A renormalization group approach was used, the action for which was constructed using group theoretical analysis to determine the irreducible representation of the spatial group responsible for this transition, in the case of magnetic moments localized on iron. It is shown that such a representation exists, which allows the orientation of magnetic moments along the c axis of the crystal. The influence of vacancies in one of the iron positions on this transition was considered using replica method by analogy with the description of frozen impurities. Power law of change magnetization was found near the transition taking into account the presence of vacancies. A condition has been determined when vacancies are pressure this transition. Possible influence of strong electron correlations and free electrons on the stability of the ferromagnetic phase was analyzed using the t–J model for non-degenerate electrons. In the generalized random phase approximation, the additional contribution of free electrons to the formation of long-range ferromagnetic order occurs through Pauli susceptibility gas of free electrons. The condition for the stability of the ferromagnetic state in this case was written out.
Авторлар туралы
V. Men'shenin
Federal State Budgetary Institution of Science M.N. Mikheev Institute of Metal Physics Ural Branch of the Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: menshenin@imp.uran.ru
Ресей, 620108, Yekaterinburg
Әдебиет тізімі
- H. -J. Deiseroth, K. Aleksandrov, C. Reiner et al., Eur. J. Inorg. Chem. 2006 (8), 1561 (2006).
- H. L. Zhuang, P. R. C. Kent, Phys. Rev. B 93, 134407 (2016).
- A. F. May, S. Calder, C. Cantoni et al., Phys. Rev. B 93, 014411 (2016).
- International Tables for Crystallography, Vol. A. Space Group Symmetry, ed. by T. Hahn, Springer (2002).
- Ю. А. Изюмов, М. И. Кацнельсон, Ю. Н. Скрябин, Магнетизм коллективизированных электронов, Физматлит, Москва (1994).
- X. Bai and F. Lecherman, Phys. Rev. B 106, L180409 ( 2022).
- X. Xu, Y. W. Li, S. R. Duan et al., Phys. Rev. B 101, 201104 (R) (2020).
- J. -X. Zhu, N. Janoschek, D. S. Chaves et al., Phys. Rev. B 93, 144404 (2016).
- Y. Deng, Y. Yu, Y. Song et al., Nature (London) 563, 94 (2018).
- Y. Zhang, H. Lu, X. Zhy et al., Sci. Adv., 4, eaao6791 (2018).
- K. Kim, J. Seo, E. Lee et al., Nat. Mater. 17, 794 (2018).
- M. Zhao, B. -B. Chen, Y. Xi et al., Nano Lett. 21, 6117 (2021).
- B. Chen, J. Yang, H. Wang et al., J. Phys. Soc. Jpn. 82, 124711 (2013).
- Ю. А. Изюмов, В. Е. Найш, Р. П. Озеров, Нейтронография магнетиков, Атомиздат, Москва (1981).
- О. В. Ковалев, Неприводимые и индуцированные представления и копредставления федоровских групп, Наука, Москва (1986).
- Ю. И. Сиротин, М. П. Шаскольская, Основы кристаллофизики, Наука, Москва (1979).
- В. В. Меньшенин, ФММ 115, 1121 (2014).
- А. Н. Васильев, Квантовополевая ренормгруппа в теории критического поведения и стохастической динамики, Изд-во ПИЯФ, СанктПетербург (1998).
- K. G. Wilson and M. Fisher, Phys. Rev. Lett. 28 240 (1972).
- Ш. Ма, Современная теория критических явлений, Мир, Москва (1980).
- A. B. Harris and T. C. Lubensky, Phys. Rev. Lett. 33, 1540 (1974).
- Д. Е. Хмельницкий. ЖЭТФ 68, 1960 (1975).
- Б. Н. Шалаев, ЖЭТФ 73, 2301 (1977).
- Дж. Займан, Принципы теории твердого тела, Мир, Москва (1974).
- В. Ю. Ирхин, Ю. П. Ирхин, Электронная структура, физические свойства и корреляционные эффекты в dи f-металлах и их соединениях, Екатеринбург (2004).
Қосымша файлдар
