Opticheskiy lineynyy dikhroizm v ab-ploskosti ferroborata NdFe3(BO3)4

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

he high-resolution optical absorption spectra of NdFe3(BO3)4 single crystals have been recorded at temperatures from 4 to 40 K in the IR range of f–f transitions in a Nd3+ ion. Light linearly polarized at different angles to the C2 axes in the basal plane has been passed along the trigonal C3 axis. Below the temperature of magnetic moment ordering into a collinear antiferromagnetic structure (TN ≈ 30 K), dichroism, that is, the absorption versus polarization dependence, arises. The temperature and angular dependences of dichroism indicate that the magnetic moments of iron are directed along the C2 axes up to about 17 K, the number of domains with variously directed C2 axes being different. The mechanism of linear dichroism has been discussed. Below 17 K, a smooth transition to the helicoidal magnetic phase has been observed, with the collinear phase coexisting with the helicoidal one. Data presented in this article contradict the earlier concept of magnetic moments fluctuating in the low-temperature phase near the C2 axis within the ±10° interval.

Авторлар туралы

K. Boldyrev

Institute of Spectroscopy, Russian Academy of Sciences

Email: popova@isan.troitsk.ru
108840, Troitsk, Moscow, Russia

M. Diab

Moscow Institute of Physics and Technology (State University)

Email: popova@isan.troitsk.ru
141700, Dolgoprudnyi, Moscow oblast, Russia

I. Gudim

Kirenskii Institute of Physics, Siberian Branch, Russian Academy of Sciences

Email: popova@isan.troitsk.ru
660036, Krasnoyarsk, Russia

M. Popova

Institute of Spectroscopy, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: popova@isan.troitsk.ru
108840, Troitsk, Moscow, Russia

Әдебиет тізімі

  1. А. К. Звездин, Г. П. Воробьев, А. М. Кадомцева и др., Письма в ЖЭТФ 83, 600 (2006).
  2. P. Fisher, V. Pomjakushin, D. Sheptyakov et al., J. Phys.: Condens. Matter 18, 7975 (2006).
  3. M. Janoschek, P. Fischer, J. Schefer et al., Phys. Rev. B 81, 094429 (2010).
  4. J. E. Hamann-Borrero, S. Partzsch, S. Valencia et al., Phys. Rev. Lett. 109, 267202 (2012).
  5. N. I. Leonyuk and L. I. Leonyuk, Prog. Cryst. Growth Charact. Mater. 31, 179 (1995).
  6. O. A. Alekseeva, E. S. Smirnova, K. V. Frolov et al., Crystals 12, 1203 (2022).
  7. E. P. Chukalina, D. Y. Kuritsin, M. N. Popova et al., Phys. Lett. A 322, 239 (2004).
  8. N. Tristan, R. Klingeler, C. Hess et al., J. Magn. Magn. Mater. 316, e621 (2007).
  9. K. V. Frolov, I. S. Lyubutin, O. A. Alekseeva et al., J. Alloys Compd. 909, 164747 (2022).
  10. Л. Е. Свистов, А. И. Смирнов, Л. А. Прозорова и др., Письма в ЖЭТФ 80, 231 (2004).
  11. S. Nakamura, T. Masuda, K. Ohgushi, and T. Katsufuji, J. Phys. Soc. Jpn. 89, 084703 (2020).
  12. K. N. Boldyrev, R. V. Pisarev, L. N. Bezmaternykh, and M. N. Popova, Phys. Rev. Lett. 109, 267202 (2012).
  13. M. N. Popova, E. P. Chukalina, T. N. Stanislavchuk et al., Phys. Rev. B 75, 224435 (2007).
  14. I. A. Gudim, E. V. Eremin, and V. L. Temerov, J. Cryst. Growth 312, 2427 (2010).
  15. А. М. Кадомцева, Ю. Ф. Попов, Г. П. Воробьев и др., ФНТ 36, 640 (2010).
  16. M. N. Popova, T. N. Stanislavchuk, B. Z. Malkin, and L. N. Bezmaternykh, Phys. Rev. Lett. 102, 187403 (2009).

© Russian Academy of Sciences, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>