QUASI-TWO-DIMENSIONAL ORGANIC CONDUCTOR к-(BEDT-TTF)2Cu[N(CN)2]Cl. CONFORMATIONAL DISORDER AND CHARGE STRUCTURE OF CONDUCTING LAYERS
- Authors: Kuz'min A.V.1,2, Khasanova E.I.1, Meletov K.P.1, Zverev V.N.1, Khasanov C.C.1,2
-
Affiliations:
- Osipyan Institute of Solid State Physics, Russian Academy of Sciences
- National Research University "Higher School of Economics"
- Issue: Vol 166, No 6 (2024)
- Pages: 795-812
- Section: SOLIDS AND LIQUIDS
- URL: https://journals.rcsi.science/0044-4510/article/view/274795
- DOI: https://doi.org/10.31857/S0044451024120046
- ID: 274795
Cite item
Abstract
Using X-ray diffraction analysis (XRD), Raman spectroscopy (RS), and quantum chemical calculations, the features of temperature behavior of thermally activated conformational disorder of terminal ethylene groups C2H4 of BEDT-TTF (or ET) molecules in crystals of quasi-two-dimensional organic conductor к-(BEDT-TTF)2Cu[N(CN)2]Cl were studied at temperatures from 112 K to 289 K. During slow cooling at a rate of –4 K/hour and steps of 10 K, crystal lattice parameters were measured and complete structural analysis was performed for characteristics temperatures. Crystal structure parameters show anomalous temperature behavior in the interval 175–250 К, in the same region an anomaly is observed in the behavior of intramolecular vibration frequencies of the ET molecule, which is associated with changes in the degree of conformational disorder. Based on the obtained structural data, the influence of the observed disorder on the electronic structure of the conducting layer was analyzed using quantum chemical modeling methods. In particular, the results of calculations using the semi- empirical extended Hückel method with a basis set optimized for the given system allowed determining the nature of electron density distribution both within the dimer and within the layer depending on the configuration of terminal ethylene groups. The main types of charge redistribution between molecules in the dimer ET2 were identified. It is shown how the population of configurations and the degree of dimer polarization affect the stability of different types of charge ordering within the conducting layer and, ultimately, the conductive properties of the crystal.
About the authors
A. V. Kuz'min
Osipyan Institute of Solid State Physics, Russian Academy of Sciences; National Research University "Higher School of Economics"
Email: kuzminav@issp.ac.ru
Russian Federation, Chernogolovka, 142432; Moscow, 119048
E. I. Khasanova
Osipyan Institute of Solid State Physics, Russian Academy of Sciences
Email: kuzminav@issp.ac.ru
Russian Federation, Chernogolovka, 142432
K. P. Meletov
Osipyan Institute of Solid State Physics, Russian Academy of Sciences
Email: kuzminav@issp.ac.ru
Russian Federation, Chernogolovka, 142432
V. N. Zverev
Osipyan Institute of Solid State Physics, Russian Academy of Sciences
Email: kuzminav@issp.ac.ru
Russian Federation, Chernogolovka, 142432
C. C. Khasanov
Osipyan Institute of Solid State Physics, Russian Academy of Sciences; National Research University "Higher School of Economics"
Author for correspondence.
Email: kuzminav@issp.ac.ru
Russian Federation, Chernogolovka, 142432; Moscow, 119048
References
- T. G. Prokhorova and E. B. Yagubskii, Russ. Chem. Rev. 86, 164 (2017).
- J. M. Williams, A. J. Schultz, U. Geiser et al., Science 252, 1501 (1972).
- E. B. Yagubskii, N. D. Kushch, A.V. Kazakova et al.,
- J. Exp. Theor. Phys. Lett. 82, 93 (2005).
- V. N. Zverev, A.I. Manakov, S. S. Khasanov et al., Phys. Rev. B 74, 104504 (2006).
- Y. Huang, Y. Hu, and S. Ren, Appl. Mater. Today 29, 101569 (2022).
- C. Hotta, Phys. Rev. B 82, 241104 (2010).
- N. Hassan, S. Cunningham, M. Mourigal et al., Science 360, 1101 (2018).
- J. Muller, M. Lang, F. Steglich et al., Phys. Rev. B 65, 144521 (2002).
- T. Hiramatsu, Y. Yoshida, G. Saito et al., J. Mater. Chem. C 3, 1378 (2014).
- J. Muller, M. Lang, F. Steglich et al., J. De Physique Iv. Proc. 114, 341 (2004).
- C. A. Angell, Science 267, 1924 (1995).
- F. Gugenberger, R. Heid, C. Meingast et al., Phys. Rev. Lett. 69, 3774 (1992).
- T. Komatsu, T. Nakamura, N. Matsukawa et al., Solid State Commun. 80, 843 (1991).
- G. M. Sheldrick, Acta Crystallogr Sect. Found Adv. 71, 3 (2015).
- G. M. Sheldrick, Acta Crystallogr Sect. C Struct. Chem. 71, 3 (2015).
- H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
- F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 73 (2012).
- R. Ditchfield, W. J. Hehre and J. A. Pople, J. Chem. Phys. 54, 724 (1971).
- Y. Saito, A. Lohle, A. Kawamoto et al., Crystals 11, 817 (2021).
- D. Cvijovic, Theor. Math. Phys. 166, 37 (2011).
- D. P. Shoemaker, D. Y. Chung, H. Claus et al., Phys. Rev. B 86, 184511 (2012).
- J. M. Williams, A. M. Kini, H. H. Wang et al., Inorg. Chem. 29, 3272 (1990).
- Y. V. Sushko, V. A. Bondarenko, R. A. Petrosov et al., J. Phys. II 1, 1015 (1991).
- H. O. Jeschke, M. de Souza, R. Valenti et al., Phys. Rev. B 85, 035125 (2012).
- C. G. Darwin, Philos. Mag. Ser. 6 43, 800 (1922).
- E. Arnold and D. M. Himmel, International Tables for Crystallography Volume F: Crystallography of Biological Macromolecules, John Wiley & Sons Ltd., (2011).
- D. H. Juers, C. A. Farley, C. P. Saxby et al., Acta Crystallogr. Sect. D 74, 922 (2018).
- D. H. Juers, J. Lovelace, H. D. Bellamy et al., Acta Crystallogr. Sect. D 63, 1139 (2007).
- A. Vahedi-Faridi, J. Lovelace, H. D. Bellamy et al., Acta Crystallogr. Sect. D 59, 2169 (2003).
- U. Shmueli, International Tables for Crystallography. Volume B: Reciprocal Space, Springer (2001).
- K. Miyagawa, A. Kawamoto, Y. Nakazawa et al., Phys. Rev. Lett. 75, 1174 (1995).
- M. A. Tanatar, T. Ishiguro, T. Kondo et al., Phys. Rev. B 59, 3841 (1999).
- P. Wzietek, H. Mayaffre, D. Jerome et al., J. Phys. 6, 2011 (1996).
- P. Wzietek, H. Mayaffre, D. Jerome et al., Synthetic Met. 85, 1511 (1997).
- X. Su, F. Zuo, J. A. Schlueter et al., Phys. Rev. B 57, R14056 (1998).
- S. Yasin, M. Dumm, B. Salameh et al., Eur. Phys. J. B 79, 383 (2011).
- P. Nagel, V. Pasler, C. Meingast et al., Phys. Rev. Lett. 85, 2376 (2000).
- T. Yamamoto, M. Uruichi, K. Yamamoto et al., J. Phys. Chem. B 109, 15226 (2005).
- K. Yakushi, Crystals 2, 1291 (2012).
- H. H. Wang, J. R. Ferraro, J. M. Williams et al., J. Chem. Soc., Chem. Commun., 1893 (1994).
- I. Olejniczak, B. Barszcz, P. Auban-Senzier et al., J. Phys. Chem. C 126, 1890 (2022).
- L. A. Hess and P. N. Prasad, J. Chem. Phys. 72, 573 (1980).
- S. Tomic, M. Pinteric, T. Ivek et al., J. Phys.: Condens. Matter 25, 436004 (2013).
- L. A. Girifalco, Statistical Mechanics of Solids, Oxford University Press, (2000).
- L. Bellaiche and D. Vanderbilt, Phys. Rev. B 61, 7877 (2000).
- P. Soven, Phys. Rev. 156, 809 (1967).
- G. Landrum, YAeHMOP 3.0 (2023).
- R. S. Mulliken, J. Chem. Phys. 23, 1833 (1955).
- H. Nishioka and K. Ando, J. Chem. Phys. 134, 1 (2011).
- A. Biancardi, S. C. Martin, C. Liss et al., J. Chem. Theory Comput. 13, 4154 (2017).
Supplementary files
