PHASE TRANSITION AT THE BIG BANG POINT IN LATTICE GRAVITY THEORY
- Authors: Vergeles S.N.1,2
-
Affiliations:
- Landau Institute for Theoretical Physics, Russian Academy of Sciences
- Moscow Institute of Physics and Technology, Department of Theoretical Physics
- Issue: Vol 166, No 6 (2024)
- Pages: 781-794
- Section: NUCLEI, PARTICLES, FIELDS, GRAVITY AND ASTROPHYSICS
- URL: https://journals.rcsi.science/0044-4510/article/view/274794
- DOI: https://doi.org/10.31857/S0044451024120034
- ID: 274794
Cite item
Abstract
Lattice regularization of gravity theory provides new opportunities for studying Big Bang physics. It is proved that in the 4D lattice gravity model studied here, there exists a high-temperature phase characterized by the vanishing of the mean energy-momentum tensor of matter and the collapse of space into a point. The existence of a low-temperature phase in the long-wavelength limit is also shown, whose geometric properties and dynamics correspond to known concepts: the Universe's expansion initially follows an exponential law and then smoothly transitions to a power-law regime.
About the authors
S. N. Vergeles
Landau Institute for Theoretical Physics, Russian Academy of Sciences; Moscow Institute of Physics and Technology, Department of Theoretical Physics
Author for correspondence.
Email: vergeles@itp.ac.ru
Russian Federation, Chernogolovka, Moscow region, 142432; Dolgoprudny, Moscow region, 141707
References
- S. Vergeles, One More Variant of Discrete Gravity Having «Naive» Continuum Limit, Nucl. Phys. B 735, 172 (2006).
- S. Vergeles, Wilson Fermion Doubling Phenomenon on an Irregular Lattice: Similarity and Difference with the Case of a Regular Lattice, Phys. Rev. D 92, 025053 (2015).
- S. Vergeles, Fermion Zero Mode Associated with Instantonlike Self-Dual Solution to Lattice Euclidean Gravity, Phys. Rev. D 96, 054512 (2017).
- S. Vergeles, A Note on the Possible Existence of an Instanton-Like Self-Dual Solution to Lattice Euclidean Gravity, J. High Energy Phys. 2017, 1 (2017).
- S. Vergeles, A Note on the Vacuum Structure of Lattice Euclidean Quantum Gravity: «Birth» of Macroscopic Space-Time and Pt-Symmetry Breaking, Class. Quant. Gravity 38, 085022 (2021).
- S. Vergeles, Domain Wall Between the Dirac Sea and the «Anti-Dirac Sea», Class. Quant. Gravity 39, 038001 (2021).
- G. Volovik, Gravity from Symmetry Breaking Phase Transition, J. Low Temp. Phys. 207, 127 (2022).
- G. Volovik, Superfluid 3he-B and Gravity, Physica B: Cond. Matt. 162, 222 (1990).
- J. Schwinger, Particles, Sources, and Fields, Vol. 1, CRC Press (2018).
- A. Linde, Recent Progress in Inflationary Cosmology, arXiv: astro-ph/9601004.
- A. Starobinsky, The Future of the Universe and the Future of Our Civilization, World Scientific (2000), p. 71.
- H. Motohashi, A. A. Starobinsky, and J. Yoko-yama, Inflation with a Constant Rate of Roll, J. Cosmol. Astropart. Phys. 2015 (09), 018 (2015).
- G. Volovik, On De Sitter Radiation via Quantum Tunneling, Int. J. Mod. Phys. D 18, 1227 (2009).
- G. Volovik, De Sitter Local Thermodynamics in F(R) Gravity, JETP Lett. 119, 564 (2024).
- G. Volovik, Thermodynamics and Decay of De Sitter Vacuum, Symmetry 16, 763 (2024).
- G. Volovik, Sommerfeld Law in Quantum Vacuum, arXiv:2307.00860.
- S. Weinberg, The Cosmological Constant Problem, Rev. Mod. Phys. 61, 1 (1989).
- D. Krotov and A. M. Polyakov, Infrared Sensitivity of Unstable Vacua, Nucl. Phys. B 849, 410 (2011).
- A. Polyakov, Infrared Instability of the De Sitter Space, arXiv:1209.4135.
- E. Akhmedov, Lecture Notes on Interacting Quantum Fields in De Sitter Space, Int. J. Mod. Phys. D 23, 1430001 (2014).
- E. Akhmedov, U. Moschella, and F. Popov, Characters of Different Secular Effects in Various Patches of De Sitter Space, Phys. Rev. D 99, 086009 (2019).
- E. Akhmedov, Curved Space Equilibration Versus Flat Space Thermalization: A Short Review, Mod. Phys. Lett. A 36, 2130020 (2021).
- A. Y. Kamenshchik, A. A. Starobinsky, and T. Vardanyan, Massive Scalar Field in De Sitter Spacetime: A Two-Loop Calculation and a Comparison with the Stochastic Approach, European Phys. J. C 82, 1 (2022).
- Y. B. Zel’Dovich and A. Starobinsky, Particle Production and Vacuum Polarization in an Anisotropic Gravitational Field, Sov.J. Exp. Theor. Phys. 34, 1159 (1972).
- A. Y. Kamenshchik, A. A. Starobinsky, A. Tron-coni, T. Vardanyan, and G. Venturi, Pauli-Zeldovich Cancellation of the Vacuum Energy Divergences, Auxiliary Fields and Supersymmetry, European Phys. J. C 78, 1 (2018).
- S. Appleby and E. V. Linder, The Well-Tempered Cosmological Constant: Fugue in B, J. Cosmol. Astropart. Phys. 2020 (12), 037 (2020).
- F. Klinkhamer and G. Volovik, Big Bang as a Topological Quantum Phase Transition, Phys. Rev. D 105, 084066 (2022).
- Q. Wang, Z. Zhu, and W. G. Unruh, How the Huge Energy of Quantum Vacuum Gravitates to Drive the Slow Accelerating Expansion of the Universe, Phys. Rev. D 95, 103504 (2017).
- D. Diakonov, Towards Lattice-Regularized Quantum Gravity, arXiv:1109.0091.
- A. A. Vladimirov and D. Diakonov, Phase Transitions in Spinor Quantum Gravity on a Lattice, Phys. Rev. D 86, 104019 (2012).
- A. A. Vladimirov and D. Diakonov, Diffeo-morphism-Invariant Lattice Actions, Phys. of Particles and Nuclei 45, 800 (2014).
- G. Volovik, Dimensionless Physics, JETP 132, 727 (2021).
Supplementary files
