ATOMISTIC ANALYSIS OF RECOMBINATIVE DESORPTION OF HYDROGEN FROM TUNGSTEN SURFACE
- Authors: Degtyarenko N.N.1, Grishakov K.S.1, Pisarev A.A.1, Gasparyan Y.M.1
-
Affiliations:
- National Research Nuclear University MEPHI
- Issue: Vol 165, No 4 (2024)
- Pages: 470-485
- Section: Articles
- URL: https://journals.rcsi.science/0044-4510/article/view/258982
- DOI: https://doi.org/10.31857/S0044451024040023
- ID: 258982
Cite item
Abstract
Within the density functional theory method, an analysis of the process of recombinative desorption of hydrogen atoms located on the surface and in the near-surface layers of tungsten W(100) is conducted. A mechanism for the growth of clusters of adsorbed hydrogen atoms on the tungsten surface is proposed. The calculation of activation energies for desorption processes for various configurations of adsorbed hydrogen atoms is performed. The dependence of the recombinative desorption activation energy on the local environment is shown. The lowest activation energy for recombinative desorption εdes ≈ 0.9–1.0 eV is achieved for a pair of H atoms, where one belongs to a cluster of hydrogen atoms adsorbed on the surface, and the other emerges from the subsurface layers of W(100).
About the authors
N. N. Degtyarenko
National Research Nuclear University MEPHI
Email: nndegtyarenko@mephi.ru
Russian Federation, 115409, Moscow
K. S. Grishakov
National Research Nuclear University MEPHI
Email: ksgrishakov@mephi.ru
Russian Federation, 115409, Moscow
A. A. Pisarev
National Research Nuclear University MEPHI
Email: ksgrishakov@mephi.ru
Russian Federation, 115409, Moscow
Yu. M. Gasparyan
National Research Nuclear University MEPHI
Author for correspondence.
Email: ksgrishakov@mephi.ru
Russian Federation, 115409, Moscow
References
- G. Pintsuk, in:Comprehensive Nuclear Materials, ed. by R. J. M. Konings, Elsevier, Vol. 4 (2012), p. 551.
- R. A. Pitts, X. Bonnin, F. Escourbiac et al., Nucl. Mater. Energy 20, 100696 (2019).
- D. F. Johnson and E. A. Carter, J. Mat. Research 25, 315 (2010).
- M. Yajima, Y. Hatano, N. Ohno et al., Nucl. Mater. Energy 21, 100699 (2019).
- V. N. Fateev, O. K. Alekseyeva, S. V. Korobtsev et al., Chemical Problems 16, 453 (2018).
- J. Roth and K. Schmid, Phys. Scr. 145, 014031 (2011).
- X.-S. Kong, S. Wang, X. Wu et al., Acta Materialia 84, 426 (2015).
- J. Guterl, R. D. Smirnov, S. I. Krasheninnikov et. al., J. Nucl. Mater. 463, 263 (2015).
- V. Kulagin, Y. Gasparyan, and N. Degtyarenko, Fusion Engineering and Design 184, 113287 (2022).
- M. W. Finnis and J. E. Sinclair, Phil. Mag. A 50, 45 (1984).
- B. J. Lee, M. I. Baskes, H. Kim et al., Phys. Rev. B 64, 184102 (2001).
- P. M. Derlet, D. Nguyen-Manh, and S. L. Dudarev, Phys. Rev. B 76, 054107 (2007).
- M. Mrovec, R. Groger, A. G. Bailey et al., Phys. Rev. B 75, 104119 (2007)..
- X. C. Li, X. Shu, Y. N. Liu et al., J. Nucl. Mater. 408, 12 (2011)..
- G. Y. Pan, Y. G. Li, Y. S. Zhang et al., RSC Adv. 7, 25789 (2017).
- T. E. Felter, R. A. Barker, and P. J. Estrup, Phys. Rev. Lett. 38, 1138 (1977).
- M. K. Debe and D. A. King, Phys. Rev. Lett. 39, 708 (1977).
- M. S. Altman, P. J. Estrup, and I. K. Robinson, Phys. Rev. B 38, 5211 (1988).
- R. Yu, H. Krakauer, and D. Singh, Phys. Rev. B 45, 8671 (1992).
- W. Xu and J. B. Adams, Surf. Sci. 319, 45 (1994).
- H. F. Busnengo and A. E. Martinez, Phys. Chem. C 112, 5579 (2008).
- L. Sun, Y.-N. Liu, W. Xiao et al., Materials Today Communications 17, 511 (2018).
- D. A. King and G. Thomas, Surf. Sci. 92, 201 (1980).
- A. Adnot and J. D. Carette, Phys. Rev. Lett. 39, 209 (1977).
- M. R. Barnes and R. F. Willis, Phys. Rev. Lett. 41, 1729 (1978).
- K. O. E. Henriksson, K. Nordlund, A. Krasheninnikov et. al, Fusion Sci. Technol. 50, 43 (2006).
- C. Becquart and C. Domain, J. Nucl. Mater. 386-388, 109 (2009).
- P. Alnot, A. Cassuto, and D. A. King, Surf. Sci. 215, 29 (1989).
- K. Heinola and T. Ahlgren, Phys. Rev. B 81, 073409 (2010).
- A. Moitra and K. Solanki, Computational Materials Science 50, 2291 (2011).
- Z. A. Piazza, M. Ajmalghan, Y. Ferro, and R.D. Kolasinski, Acta Materialia 145, 388 (2018).
- R. A. Barker and P. J. Estrup, J. Chem. Phys. 74, 1442 (1981).
- L. Cai, M. S. Altman, E. Granato et al., Phys. Rev. Lett. 88, 226105 (2002).
- G. Pan, Y. Zhang, Y. Li et al., International Journal of Modern Physics C 28, 1750090 (2017).
- E. Hodille, M. Payet, V. Marascu et. al., Nucl. Fusion 61, 086030 (2021).
- Y. Ferro, E. A. Hodille, J. Denis et al., Nucl. Fusion 63, 036017 (2023).
- M. Ajmalghan, Z. A. Piazza, E. A. Hodille et al., Nucl. Fusion 59, 106022 (2019).
- T. W. Hickmott, J. Chem. Phys. 32, 810 (1960).
- P. Giannozzi, S. Baroni, N. Bonini et al., J. Phys.: Condens. Matter 21, 395502 (2009).
- P. Giannozzi, O. Andreussi, T. Brumme, et al., J. Phys.: Condens. Matter 29, 465901 (2017).
- N. N. Degtyarenko and A A Pisarev, Physics Procedia 71, 30 (2015).
- N. N. Degtyarenko and A A Pisarev, J. Phys.: Conference Series 748, 012010 (2018).
- K. Nordlund, J. Keinonen, Phys. Rev. B 82, 094102 (2010).
- E. Hodille, X. Bonnin, R. Bisson et al., J. Nucl. Mater 467, 424 (2015).
- E A Hodille, Y Ferro, N Fernandez et al., Physica Scripta T167, 014011 (2016).
- K. Heinola, T. Ahlgren, K. Nordlund et al., Phys. Rev. B 82, 094102 (2010).
- Z. Piazza, R. Kolasinski, M. Ajmalghan, E. Hodille, Y. Ferro, J. Phys. Chem. C 125, 16086 (2021).
Supplementary files
