Optimizatsiya parametrov petel' obratnoy svyazi v opticheskikh chasakh na atomakh tuliya pri sinkhronnom slichenii

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Синхронное сличение оптических часов с использованием фазово-когерентных часовых лазеров позволяет определять разность (отношение) частот часовых переходов, не ограниченную общими шумами используемых лазеров. Проведено детальное моделирование сличения двух тулиевых оптических часов с использованием синхронного опроса атомов излучением общего часового лазера. Определен ряд критичных параметров, таких как остаточные нескореллированные частотные и амплитудные шумы импульсов пробного излучения и шумы считывания, которые могут приводить к ухудшению стабильности сличения. В то же время продемонстрировано, что такой способ нечувствителен к флуктуациям числа атомов, калибровке параметров петли обратной связи, отдельным выбросам в циклах измерений и флуктуациям лабораторного магнитного поля.

References

  1. T. Nicholson, S. Campbell, R. Hutson, G. Marti, B. Bloom, R. McNally, W. Zhang, M. Barrett, M. Safronova, G. Strouse, W. Tew, and J. Ye, Nature Сommun. 6, 1 (2015).
  2. S. M. Brewer, J. Chen, A. M. Hankin, E. R. Clements, C. W. Chou, D. J. Wineland, D. B. Hume, and D. R. Leibrandt, Phys. Rev. Lett. 123, 033201 (2019).
  3. N. Huntemann, C. Sanner, B. Lipphardt, C. Tamm, and E. Peik, Phys. Rev. Lett. 116, 063001 (2016).
  4. T. Bothwell, D. Kedar, E. Oelker, J. M. Robinson, S. L. Bromley, W. L. Tew, J. Ye, and C. J. Kennedy, Metrologia 56, 065004 (2019).
  5. E. Oelker et al., Nature Photon. 13, 714 (2019).
  6. T. Bothwell, C. J. Kennedy, A. Aeppli, D. Kedar, J. M. Robinson, E. Oelker, A. Staron, and J. Ye, Nature 602, 420 (2022).
  7. H. Inaba, K. Hosaka, M. Yasuda, Y. Nakajima, K. Iwakuni, D. Akamatsu, S. Okubo, T. Kohno, A. Onae, and F.-L. Hong, Opt. Express 21, 7891 (2013).
  8. A. Golovizin, E. Fedorova, D. Tregubov, D. Sukachev, K. Khabarova, V. Sorokin, and N. Kolachevsky, Nature Commun. 10, 1724 (2019).
  9. A. A. Golovizin, D. O. Tregubov, E. S. Fedorova, D. A. Mishin, D. I. Provorchenko, K. Y. Khabarova, V. N. Sorokin, and N. N. Kolachevsky, Nature Commun. 12, 5171 (2021).
  10. A. Golovizin, D. Tregubov, E. Fedorova, D. Mishin, D. Provorchenko, D. Sukachev, K. Khabarova, V. Sorokin, and N. Kolachevsky, AIP Conf. Proc. 2241, 020016 (2020).
  11. A. Golovizin, D. Tregubov, D. Mishin, D. Provorchenko, and N. Kolachevsky, Opt. Express 29, 36734 (2021).
  12. D. Tregubov, A. Golovizin, D. Provorchenko, D. Mishin, V. Sorokin, K. Khabarova, and N. Kolachevsky, 2021 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS), 1 (2021).
  13. K. Kudeyarov, G. Vishnyakova, K. Y. Khabarova, and N. Kolachevsky, Laser Phys. 28, 105103 (2018).
  14. A. Kuhl, T. Waterholter, S. Koke, G. Grosche, G. Vishnyakova, and R. Holzwarth, 2019 Joint Conference of the IEEE International Frequency Control Symposium and European Frequency and Time Forum (EFTF/IFC), 1 (2019).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies