STABILIZATION OF THE COLLINEAR PLATEAU PHASE BY THERMAL FLUCTUATIONS IN THE DILUTED TRIANGULAR LATTICE ANTIFERROMAGNET Rb(1-x)KxFe(MoO4)2
- Autores: Glazkov V.N1, Krastilevskiy J.A1
-
Afiliações:
- P. L. Kapitza Institute for Physical Problems, Russian Academy of Sciences
- Edição: Volume 168, Nº 3 (2025)
- Páginas: 414–424
- Seção: ORDER, DISORDER AND PHASE TRANSITIONS IN CONDENSED MATTER
- URL: https://journals.rcsi.science/0044-4510/article/view/317335
- DOI: https://doi.org/10.7868/S3034641X25090144
- ID: 317335
Citar
Resumo
Sobre autores
V. Glazkov
P. L. Kapitza Institute for Physical Problems, Russian Academy of Sciences
Email: glazkov@kapitza.ras.ru
Moscow, Russia
J. Krastilevskiy
P. L. Kapitza Institute for Physical Problems, Russian Academy of SciencesMoscow, Russia
Bibliografia
- P. W. Anderson, Resonating Valence Bonds: A New Kind of Insulator?, Mater. Res. Bull. 8, 153 (1973); doi: 10.1016/0025-5408(73)90167-0.
- P. Fazekas and P. W. Anderson, On the Ground State Properties of the Anisotropic Triangular Antiferromagnet, Phil. Mag. 30, 423 (1974); doi: 10.1080/14786439808206568.
- S. Miyashita, A Variational Study of the Ground State of Frustrated Quantum Spin Models, J. Phys. Soc. Jpn. 53, 44 (1984); doi: 10.1143/JPSJ.53.44.
- S. Miyashita and H. Shiba, Nature of the Phase Transition of the Two-Dimensional Antiferromagnetic Plane Rotator Model on the Triangular Lattice, J. Phys. Soc. Jpn. 53, 1145 (1984); doi: 10.1143/JPSJ.53.1145.
- M. F. Collins and O. A. Petrenko, Triangular Antiferromagnets, Can. J. Phys. 75, 605 (1997); doi: 10.1139/p97-007
- Y. Nishiwaki, K. Iio, and T. Mitsui, Multiferroic Phase Transitions of Triangular-Lattice-Antiferromagnet RbCoBr3, J. Korean Phys. Soc. 46, 285 (2005).
- M. Kenzelmann, G. Lawes, A. B. Harris, G. Gasparovic, C. Broholm, A. P. Ramirez, G. A. Jorge, M. Jaime, S. Park, Q. Huang, A. Ya. Shapiro, and L. A. Demianets, Direct Transition from a Disordered to a Multiferroic Phase on a Triangular Lattice, Phys. Rev. Lett. 98, 267205 (2007); doi: 10.1103/Phys-RevLett.98.267205.
- A. L. Chernyshev and M. E. Zhitomirsky, Spin Waves in a Triangular Lattice Antiferromagnet: Decays, Spectrum Renormalization, and Singularities, Phys. Rev. B 79, 144416 (2009); doi: 10.1103/Phys-RevB.79.144416.
- H. Kawamura, Spin-Wave Analysis of the Antiferromagnetic Plane Rotator Model on the Triangular Lattice — Symmetry Breaking in a Magnetic Field, J. Phys. Soc. Jpn. 53, 2452 (1984); doi: 10.1143/JPSJ.53.2452.
- A. V. Chubukov and D. I. Golosov, Quantum theory of an antiferromagnet on a triangular lattice in a magnetic field, J. Phys. Condens.Matter 3, 69 (1991), doi: 10.1088/0953-8984/3/1/005
- H. Kawamura and S. Miyashita, Phase Transition of the Heisenberg Antiferromagnet on the Triangular Lattice in a Magnetic Field, J. Phys. Soc. Jpn. 54, 4530 (1985); doi: 10.1143/JPSJ.54.4530.
- T. Coletta, T. A. Toth, K. Penc, and F. Mila, Semiclassical Theory of the Magnetization Process of the Triangular Lattice Heisenberg Model, Phys. Rev. B 94, 075136 (2016); doi: 10.1103/Phys-RevB.94.075136.
- A. I. Smirnov, H. Yashiro, S. Kimura, M. Hagiwara, Y. Narumi, K. Kindo, A. Kikkawa, K. Katsumata, A. Ya. Shapiro, and L. N. Demianets, Triangular Lattice Antiferromagnet RbFe(MoO4)2 in High Magnetic Fields, Phys. Rev. B 75, 134412 (2007); doi: 10.1103/PhysRevB.75.134412.
- Y. Shirata, H. Tanaka, A. Matsuo, and K. Kindo, Experimental Realization of a Spin-1/2 Triangular-Lattice Heisenberg Antiferromagnet, Phys. Rev. Lett. 108, 057205 (2012); doi: 10.1103/Phys-RevLett.108.057205.
- T. Susuki, N. Kurita, T. Tanaka, H. Nojiri, A. Matsuo, K. Kindo, and H. Tanaka, Magnetization Process and Collective Excitations in the S=1/2 Triangular-Lattice Heisenberg Antiferromagnet Ba3CoSb2O9, Phys. Rev. Lett. 110, 267201 (2013); doi: 10.1103/PhysRevLett.110.267201.
- V. S. Maryasin and M. E. Zhitomirsky, Triangular Antiferromagnet with Nonmagnetic Impurities, Phys. Rev. Lett. 111, 247201 (2013); doi: 10.1103/Phys-RevLett.111.247201.
- S. A. Klimin, M. N. Popova, B. N. Mavrin, P. H. M. van Loosdrecht, L. E. Svistov, A. I. Smirnov, L. A. Prozorova, H.-A. Krug von Nidda, Z. Seidov, A. Loidl, A. Ya. Shapiro, and L. N. Demianets, Structural Phase Transition in the Two-Dimensional Triangular Lattice Antiferromagnet RbFe(MoO4)2, Phys. Rev. B 68, 174408 (2003); doi: 10.1103/Phys-RevB.68.174408.
- T. Inami, Neutron Powder Diffraction Experiments on the Layered Triangular-Lattice Antiferromagnets RbFe(MoO4)2 and CsFe(SO4)2, J. Solid State Chem. 180, 2075 (2007); doi: 10.1016/j.jssc.2007.04.022.
- L. E. Svistov, A. I. Smirnov, L. A. Prozorova, O. A. Petrenko, L. N. Demianets, and A. Ya. Shapiro, Quasi-Two-Dimensional Antiferromagnet on a Triangular Lattice RbFe(MoO4)2, Phys. Rev. B 67, 139901 (2003); doi: 10.1103/PhysRevB.67.094434.
- A. I. Smirnov, L. E. Svistov, L. A. Prozorova, O. A. Petrenko, and M. Hagiwara, Triangular Lattice Antiferromagnet RbFe(MoO4)2, Phys.-Usp. 53, 844 (2010); doi: 10.3367/UFNe.0180.201008l.0880.
- L. E. Svistov, L. A. Prozorova, N. Buttgen, A. Ya. Shapiro, and L. N. Demyanets, 87Rb NMR study of the magnetic structure of the quasi-twodimensional antiferromagnet RbFe(MoO4)2 on a triangular lattice, JETP Lett. 81, 102 (2005); doi: 10.1134/1.1897999.
- Yu. A. Sakhratov, L. E. Svistov, and A. P. Reyes, Anisotropy Stabilized Magnetic Phases of the Triangular Antiferromagnet RbFe(MoO4)2, JETP 137, 526 (2023); doi: 10.1134/S1063776123100102.
- A. I. Smirnov, T. A. Soldatov, O. A. Petrenko, A. Takata, T. Kida, M. Hagiwara, M. E. Zhitomirsky, and A. Ya. Shapiro, Competition Between Dynamic and Structural Disorder in a Doped Triangular Antiferromagnet RbFe(MoO4)2, J. Phys.: Conf. Ser. 969, 012115 (2018); doi: 10.1088/1742-6596/969/1/012115.
- J. S.White, Ch. Niedermayer, G. Gasparovic, C. Broholm, J. M. S. Park, A. Ya. Shapiro, L. A. Demianets, and M. Kenzelmann, Multiferroicity in the Generic Easy-Plane Triangular Lattice Antiferromagnet RbFe(MoO4)2, Phys. Rev. B 88, 060409(R) (2013); doi: 10.1103/PhysRevB.88.060409.
- A. I. Smirnov, T. A. Soldatov, O. A. Petrenko, A. Takata, T. Kida, M. Hagiwara, A. Ya. Shapiro, and M. E. Zhitomirsky, Order by Quenched Disorder in the Model Triangular Antiferromagnet RbFe(MoO4)2, Phys. Rev. Lett. 119, 047204 (2017); doi: 10.1103/PhysRevLett.119.047204.
- Yu. A. Sakhratov, M. Prinz-Zwick, D. Wilson, N. Buttgen, A. Ya. Shapiro, L. E. Svistov, and A. P. Reyes, Magnetic Structure of the Triangular Antiferromagnet RbFe(MoO4)2 weakly doped with nonmagnetic K+ ions studied by NMR, Phys. Rev. B 99, 024419 (2019); doi: 10.1103/Phys-RevB.99.024419.
- V. N. Glazkov, C. Marin, and J.-P. Sanchez, Observation of a Transverse Magnetization in the Ordered Phases of the Pyrochlore Magnet Gd2Ti2O7, J. Phys.: Condens. Matter 18, L429 (2006); doi: 10.1088/0953-8984/18/34/L01.
- O. A. Petrenko, M. R. Lees, G. Balakrishnan, V. N. Glazkov, and S. S. Sosin, Magnetic Phases in a Gd2Ti2O7 pyrochlore for a field applied along the [100] axis, Phys. Rev. B 85, 180412(R) (2012); doi: 10.1103/PhysRevB.85.180412.
- I. Sheikin, A. Groger, S. Raymond, D. Jaccard, D. Aoki, H. Harima, and J. Flouquet, High Magnetic Field Study of CePd2Si2, Phys. Rev. B 67, 094420 (2003); doi: 10.1103/PhysRevB.67.094420.
- M. T. Heinila and A. S. Oja, Selection of the Ground State in Type-I fcc Antiferromagnets in an External Magnetic Field, Phys. Rev. B 48, 7227 (1993); doi: 10.1103/PhysRevB.48.7227.
- V. N. Glazkov, Reminiscence of a Magnetization Plateau in a Magnetization Processes of Toy-Model Triangular and Tetrahedral Clusters, JETP 128, 464 (2019); doi: 10.1134/S106377611903004X.
Arquivos suplementares
