ZVUKOVYE IMPUL'SY, VOZNIKAYuShchIE PRI VOZDEYSTVII LAZERNOGO IMPUL'SA NA METALL
- Authors: Danilov E.A1, Uryupin S.A1
-
Affiliations:
- Issue: Vol 168, No 4 (2025)
- Pages: 453-463
- Section: ATOMS, MOLECULES, OPTICS
- URL: https://journals.rcsi.science/0044-4510/article/view/317096
- DOI: https://doi.org/10.7868/S3034641X25100014
- ID: 317096
Cite item
Abstract
References
- K. L. Muratikov, A. L. Glazov, D. N. Rose, and J. E. Dumar, Photoacoustic Effect in Stressed Elastic Solids, J. Appl. Phys. 88, 2948 (2000).
- V. V. Kozhushko and P. Hess, Nondestructive Evaluation of Microcracks by Laser-Induced Focused Ultrasound, Appl. Phys. Lett. 91, 224107 (2007).
- A. L. Glazov and K. L. Muratikov, Generalized Thermoelastic Effect in Real Metals and Its Application for Describing Photoacoustic Experiments with Al Membranes, J. Appl. Phys. 128, 095106 (2020).
- S. Ramanathan and D. G. Cahill, High-Resolution Picosecond Acoustic Microscopy for Non-Invasive Characterization of Buried Interfaces, J. Mater. Res. 21, 1204 (2006).
- J. C. D. Faria, P. Garnier, and A. Devos, Non-Destructive Spatial Characterization of Buried Interfaces in Multilayer Slocks via Two Color Picosecond Acoustics, Appl. Phys. Lett. 111, 243105 (2017).
- O. B. Wright, Thickness and Sound Velocity Measurement in Thin Transparent Films with Laser Picosecond Acoustics, J. Appl. Phys. 71, 1617 (1992).
- K. E. O'Hara, X. Hu, and D. G. Cahill, Characterization of Nanostructured Metal Films by Picosecond Acoustics and Interferometry, J. Appl. Phys. 90, 4852 (2001).
- C. A. Pомашевский, C. И. Ашитков, В. А. Хохлов, Н. А. Иногамов, Исследование релаксации энергии в наноименее никеля после сверлокопровода нагрева электронной подсистемы фемтосекундным лазерным импульсом, TBT 62, 906 (2024).
- G. A. Antonelli, H. J. Maris, S. G. Malhotra, and J. M. E. Harper, Picosecond Ultrasonics Study of the Vibrational Modes of a Nanostructure, J. Appl. Phys. 91, 3261 (2002).
- V. Juve, A. Crut, P. Maioli, M. Pellarin, M. Broyer, N. Del Fatti, and F. Vallee, Probing Elasticity at the Nanoscale: Terahertz Acoustic Vibration of Small Metal Nanoparticles, Nano Lett. 10, 1853 (2010).
- R. Fuentes-Dominguez, R. J. Smith, F. Perez-Cota, L. Marques, O. Peña-Rodriguez, and M. Clark, Size Characterisation Method and Detection Enhancement of Plasmonic Nanoparticles in a Pump-Probe System, Appl. Sci. 7, 819 (2017).
- C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, Surface Generation and Detection of Phonons by Picosecond Light Pulses, Phys. Rev. B 34, 4129 (1986).
- C. A. Axuanos, B. Э. Гусев, Лазерное возбуждение сверлокоприкачественных импульсов: ноеме возможности в спектроскопии твердого тела, диагностике быстротропеклощаги процессов и нелинейной акустике, УФН 162, 3 (1992).
- O. B. Wright and V. E. Gusev, Ultrafast Generation of Acoustic Waves in Copper, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 42, 331 (1995).
- C. J. K. Richardson, M. J. Ehrlich, and J. W. Wagner, Interferometric Detection of Ultrafast Thermoelastic Transients in Thin Films: Theory with Supporting Experiment, J. Opt. Soc. Am. B 16, 1007 (1999).
- O. Matsuda, M. C. Larciprete, R. Li Voti, and O. B. Wright, Fundamentals of Picosecond Laser Ultrasonics, Ultrasonics 56, 3 (2015).
- P. Ruello and V. E. Gusev, Physical Mechanisms of Coherent Acoustic Phonons Generation, Ultrasonics 56, 21 (2015).
- A. Yu. Klokov, V. S. Krivobok, A. I. Sharkov, V. A. Tsvetkov, V. P. Martovitskii, and A. V. Novikov, Acoustic Properties of Strained SiGe/Si Layers in the Sub-Terahertz Frequency Range, J. Appl. Phys. 127, 154304 (2020).
- K.-Yu Chou, C.-L. Wu, C.-C. Shen, J.-K. Sheu, and C.-K. Sun, Terahertz Photoacoustic Generation Using Ultrathin Nickel Nanofilms, J. Phys. Chem. C 125, 3134 (2021).
- E. A. Danilov and S. A. Uryupin, Terahertz Sound Generation at the Effect of a Femtosecond Pulse of Laser Radiation on a Metal, Opt. Lett. 48, 2170 (2023).
- T. Dehoux, M. Perton, N. Chigarev, C. Rossignol, J.-M. Rampmoux, and B. Audoin, Effect of Laser Pulse Duration in Picosecond Ultrasonics, J. Appl. Phys. 100, 064318 (2006).
- T. Saito, O. Matsuda, and O. B. Wright, Picosecond Acoustic Phonon Pulse Generation in Nickel and Chromium, Phys. Rev. B 67, 205421 (2003).
- M. Lejman, V. Shalagatskyi, O. Kovalenko, T. Pezeril, V. V. Temnov, and P. Ruello, Ultrafast Optical Detection of Coherent Acoustic Phonons Emission Driven by Superdiffusive Hot Electrons, J. Opt. Soc. Am. B 31, 282 (2014).
- P.-J. Wang, C.-C. Shen, K.-Y. Chou, M.-H. Ho, J.-K. Sheu, and C.-K. Sun, Studying Time-Dependent Contribution of Hot-Electron Versus Lattice-Induced Thermal-Expansion Response in Ultra-Thin Au-Nanofilms, Appl. Phys. Lett. 117, 154101 (2020).
- E. A. Danilov and S. A. Uryupin, Generation and Detection of Sound at the Effect of Femtosecond Pulses on a Metal Film on a Dielectric Substrate, J. Appl. Phys. 133, 203101 (2023).
- E. A. Danilov and S. A. Uryupin, Laser Sound Generation in a Thin Metal Film on a Dielectric Substrate, Eur. Phys. J. Plus 139, 861 (2024).
- IO. B. Herpon, C. A. Pомашевский, A. B. Дышлюк, B. A. Хохлов, E. M. Еганова, M. B. Поляков, C. A. Евлашин, C. И. Ашитков, O. B. Витрик, H. A. Инотамов, Аномальное пропускание светла оптически толстными пленками никеля, являющимися оптоакустическими трансфюсерами, ЖЭТФ 167, 645 (2025).
- V. E. Gusev, On the Duration of Acoustic Pulses Excited by Subpicosecond Laser Action on Metals, Opt. Commun. 94, 76 (1992).
- C. Kittel, Introduction to Solid State Physics, Hoboken, NJ, John Wiley & Sons (2005).
- W. M. Haynes, CRC Handbook of Chemistry and Physics, CRC Press (2016).
- P. B. Johnson and R. W. Christy, Optical Constants of the Noble Metals, Phys. Rev. B 6, 4370 (1972).
- H. U. Yang, J. D'Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, Optical Dielectric Function of Silver, Phys. Rev. B 91, 235137 (2015).
- Zh. Lin, L.V. Zhigilei, and V. Celli, Electron-Phonon Coupling and Electron Heat Capacity of Metals under Conditions of Strong Electron-Phonon Nonequilibrium, Phys. Rev. B 77, 075133 (2008).
- P. K. George and E. D. Thompson, The Debye Temperature of Nickel from 0 to 300°K, J. Phys. Chem. Solids 28, 2539 (1967).
- M. I. Kaganov, I. M. Lifshitz, and I. V. Tantarov, Relaxation between Electrons and Lattice, Sov. Phys. JETP 4, 173 (1957).
- S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel'man, Electron Emission from Metal Surfaces Exposed to Ultrashort Laser Pulses, Sov. Phys. JETP 39, 375 (1974).
- K. O. Mclean, C. A. Swenson, and C. R. Case, Thermal Expansion of Copper, Silver, and Gold Below 30 K, J. Low Temp. Phys. 7, 77 (1972).
- G. Tas and H. J. Maris, Electron Diffusion in Metals Studied by Picosecond Ultrasonics, Phys. Rev. B 49, 15046 (1994).
- T. Baron and J. Collins, Thermal Expansion of Solids at Low Temperatures, Adv. Phys. 29, 609 (1980).
- M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, Optical Properties of Fourteen Metals in the Infrared and Far Infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W, Appl. Opt. 24, 4493 (1985).
- A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, Optical Properties of Metallic Films for Vertical-Cavity Optoelectronic Devices, Appl. Opt. 37, 5271 (1998).
Supplementary files
