SVETOVOY KONTROL' RASPREDELENIYa NANOChASTITs V KOLLOIDAKh S USILENIEM I POGLOShchENIEM

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Изучается воздействие света на композитную систему, которая представляет собой сбалансированный по поглощению/усилению коллоидный раствор поглощающих наночастиц в усиливающей жидкости. Рассмотрена модель плоского слоя коллоида, на который по нормали падает плоская (TEM) электромагнитная волна. Совместное действие стрикции и силы увлечения (сила, возникающая вследствие передачи поглощающим частицам импульса фотонов) вызывает пространственное перераспределение концентрации частиц, в результате чего локальный баланс поглощения и усиления в слое нарушается, и выделяются пространственные области, в которых происходит усиление и поглощение света. Показано, что в зависимости от интенсивности падающего излучения могут реализоваться как плавные, так и почти ступенчатые профили концентрации наночастиц. Соответствующие распределения эффективной диэлектрической проницаемости коллоида обладают PT (Parity-Time)-симметрией (отвечает условию ε(z) = ε∗(−z)) при малой интенсивности поля накачки, но отличаются от PT-симметричных распределений при умеренных и высоких интенсивностях. Создание контролируемого профиля локального усиления и поглощения света может служить платформой для изучения специфических неэрмитовых оптических эффектов, а также расширяет возможности оптической диагностики распределения наночастиц в коллоидных растворах со скомпенсированным поглощением.

References

  1. R. El-Ganainy, K. G. Makris, M. Khajavikhan et al., Non-Hermitian Physics and Pt Symmetry, Nature Phys. 14, 11 (2018).
  2. C. M. Bender and S. Boettcher, Real Spectra in Non-Hermitian Hamiltonians Having Pt Symmetry, Phys. Rev. Lett. 80, 5243 (1998).
  3. А. А. Зябловский, А. П. Виноградов, А. А. Пухов, А. В. Дорофеенко, А. А. Лисянский, PT-симметрия в оптике, УФН 184, 1177 (2014) [A. A. Zyablovsky, A. P. Vinogradov, A. A. Pukhov, A. V. Dorofeenko, and A. A. Lisyansky, Pt-Symmetry in Optics, Phys. Uspekhi 57, 1063 (2014)].
  4. W. D. Heiss, J. Phys. A 37, 2455 (2004).
  5. Y. D. Chong, L. Ge, and A. D. Stone, Pt-Symmetry Breaking and Laser-Absorber Modes in Optical Scattering Systems, Phys. Rev. Lett. 106, 093902 (2011).
  6. Z. J. Wong, J. Kim, K. O’Brien, Y. Wang, L. Fencs, and X. Zhang, Lasing and Anti-Lasing in a Single Cavity, Nature Photon. 10, 796 (2016).
  7. X. Zhu, L. Feng, P. Zhang, X. Yin, and X. Zhang, One-Way Invisible Cloak Using ParityTime Symmetric Transformation Optics, Opt. Lett. 38, 2821 (2013).
  8. W. Chen, S. K. Ozdemir, G. Zhao, J. Wiersig, and L. Yang, Exceptional Points Enhance Sensing in an Optical Microcavity, Nature 548, 192 (2017).
  9. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, Demonstration of a Spacer-Based Nanolasers, Nature Lett. 460, 1110 (2009).
  10. Y. Wu, Zh. Huang, Qi Sun, V. D. Ta, S. Wang, and Y. Wang, A New Generation of Liquid Lasers from Engineered Semiconductor Nanocrystals with Giant Optical Gain, Laser Photon. Rev. 17, 2200703 (2023).
  11. A. A. Zharov and N. A. Zharova, Light-Driven Pt-Symmetry in Colloids with Gain and Loss Nanoparticles, J. Opt. Soc. Am. B 40, 2618 (2023).
  12. D. Gao, R. Shi, Y. Huang, and L. Gao, Fano-Enhanced Pulling and Pushing Optical Forces on Active Nanoparticles, Phys. Rev. A 96, 043826 (2017).
  13. H. Chen, L. Gao, C. Zhong, G. Yuan, Y. Huang, Z. Yu, M. Cao, and M. Wang, Optical Pulling Force on Nonlinear Nanoparticles with Gain, AIP Advances 10, 015131 (2020).
  14. X. Bian, D. L. Gao, and L. Gao, Tailoring Optical Pulling Force on Gain Coated Nanoparticles with Nonlocal Effective Medium Theory, Opt. Express 25, 24566 (2017).
  15. Y. Wu, Z. Huang, Q. Sun, V. D. Ta, S. Wang, and Y. Wang, A New Generation of Liquid Lasers from Engineered Semiconductor Nanocrystals with Giant Optical Gain, Laser Photon. Rev. 17, 2200703 (2023).
  16. B. Yang, H. Sun, C.-J. Huang, H.-Y. Wang, Y. Deng, H.-N. Dai, Z.-S. Yuan, and J.-W. Pan, Cooling and Entangling Ultracold Atoms in Optical Lattices, Science 369, 550 (2020).
  17. H. Xin, Y. Li, Y.-C. Liu, Y. Zhang, Y.-F. Xiao, and B. Li, Optical Forces: from Fundamental to Biological Applications, Adv. Mater. 32, 2001994 (2020).
  18. A. A. Zharov, Jr., A. A. Zharov, I. V. Shadrivov, and N. A. Zharova, Grading Plasmonic Nanoparticles with Light, Phys. Rev. A 93, 013814 (2016).
  19. Х. Гиббс, Оптическая бистабильность. Управление светом с помощью света, Мир, Москва (1988).
  20. Y. D. Chong, Li Ge, and A. D. Stone, Pt-Symmetry Breaking and Laser-Absorber Modes in Optical Scattering Systems, Phys. Rev. Lett. 106, 093902 (2011).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».