OPTICAL CONTROL OF NANOPARTICLE DISTRIBUTION IN COLLOIDS WITH GAIN AND ABSORPTION
- 作者: Zharov A.A.1, Zharova N.A.2
-
隶属关系:
- Institute for Physics of Microstructures of the Russian Academy of Sciences
- Institute of Applied Physics of the Russian Academy of Sciences
- 期: 卷 166, 编号 6 (2024)
- 页面: 771-780
- 栏目: ATOMS, MOLECULES, OPTICS
- URL: https://journals.rcsi.science/0044-4510/article/view/274793
- DOI: https://doi.org/10.31857/S0044451024120022
- ID: 274793
如何引用文章
详细
The effect of light on a composite system, which is an absorption/gain-balanced colloidal solution of absorbing nanoparticles in a gain medium, is studied. A model of a flat colloidal layer with normally incident plane (TEM) electromagnetic wave is considered. The combined action of striction and drag force (force arising from the transfer of photon momentum to absorbing particles) causes spatial redistribution of particle concentration, resulting in local disruption of absorption and gain balance in the layer, and spatial regions where light amplification and absorption occur are distinguished. It is shown that depending on the incident radiation intensity, both smooth and almost step-like nanoparticle concentration profiles can be realized. The corresponding distributions of the effective dielectric permittivity of the colloid possess PT (Parity-Time)-symmetry (satisfying condition e(z) = e*(-z)) at low pump field intensity, but differ from PT-symmetric distributions at moderate and high intensities. Creating a controlled profile of local light gain and absorption can serve as a platform for studying specific non-Hermitian optical effects, and also expands the possibilities of optical diagnostics of nanoparticle distribution in colloidal solutions with compensated absorption.
作者简介
A. Zharov
Institute for Physics of Microstructures of the Russian Academy of Sciences
Email: zhani@appl.sci-nnov.ru
俄罗斯联邦, Nizhny Novgorod, 603950
N. Zharova
Institute of Applied Physics of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: zhani@appl.sci-nnov.ru
俄罗斯联邦, Nizhny Novgorod, 603950
参考
- R. El-Ganainy, K. G. Makris, M. Khajavikhan et al., Non-Hermitian Physics and Pt Symmetry, Nature Phys. 14, 11 (2018).
- C. M. Bender and S. Boettcher, Real Spectra in Non-Hermitian Hamiltonians Having Pt Symmetry, Phys. Rev. Lett. 80, 5243 (1998).
- А. А. Зябловский, А. П. Виноградов, А. А. Пухов, А. В. Дорофеенко, А. А. Лисянский, PT-симметрия в оптике, УФН 184, 1177 (2014) [A. A. Zyablovsky, A. P. Vinogradov, A. A. Pukhov, A. V. Dorofeenko, and A. A. Lisyansky, Pt-Symmetry in Optics, Phys. Uspekhi 57, 1063 (2014)].
- W. D. Heiss, J. Phys. A 37, 2455 (2004).
- Y. D. Chong, L. Ge, and A. D. Stone, Pt-Symmetry Breaking and Laser-Absorber Modes in Optical Scattering Systems, Phys. Rev. Lett. 106, 093902 (2011).
- Z. J. Wong, J. Kim, K. O’Brien, Y. Wang, L. Fencs, and X. Zhang, Lasing and Anti-Lasing in a Single Cavity, Nature Photon. 10, 796 (2016).
- X. Zhu, L. Feng, P. Zhang, X. Yin, and X. Zhang, One-Way Invisible Cloak Using ParityTime Symmetric Transformation Optics, Opt. Lett. 38, 2821 (2013).
- W. Chen, S. K. Ozdemir, G. Zhao, J. Wiersig, and L. Yang, Exceptional Points Enhance Sensing in an Optical Microcavity, Nature 548, 192 (2017).
- M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, Demonstration of a Spacer-Based Nanolasers, Nature Lett. 460, 1110 (2009).
- Y. Wu, Zh. Huang, Qi Sun, V. D. Ta, S. Wang, and Y. Wang, A New Generation of Liquid Lasers from Engineered Semiconductor Nanocrystals with Giant Optical Gain, Laser Photon. Rev. 17, 2200703 (2023).
- A. A. Zharov and N. A. Zharova, Light-Driven Pt-Symmetry in Colloids with Gain and Loss Nanoparticles, J. Opt. Soc. Am. B 40, 2618 (2023).
- D. Gao, R. Shi, Y. Huang, and L. Gao, Fano-Enhanced Pulling and Pushing Optical Forces on Active Nanoparticles, Phys. Rev. A 96, 043826 (2017).
- H. Chen, L. Gao, C. Zhong, G. Yuan, Y. Huang, Z. Yu, M. Cao, and M. Wang, Optical Pulling Force on Nonlinear Nanoparticles with Gain, AIP Advances 10, 015131 (2020).
- X. Bian, D. L. Gao, and L. Gao, Tailoring Optical Pulling Force on Gain Coated Nanoparticles with Nonlocal Effective Medium Theory, Opt. Express 25, 24566 (2017).
- Y. Wu, Z. Huang, Q. Sun, V. D. Ta, S. Wang, and Y. Wang, A New Generation of Liquid Lasers from Engineered Semiconductor Nanocrystals with Giant Optical Gain, Laser Photon. Rev. 17, 2200703 (2023).
- B. Yang, H. Sun, C.-J. Huang, H.-Y. Wang, Y. Deng, H.-N. Dai, Z.-S. Yuan, and J.-W. Pan, Cooling and Entangling Ultracold Atoms in Optical Lattices, Science 369, 550 (2020).
- H. Xin, Y. Li, Y.-C. Liu, Y. Zhang, Y.-F. Xiao, and B. Li, Optical Forces: from Fundamental to Biological Applications, Adv. Mater. 32, 2001994 (2020).
- A. A. Zharov, Jr., A. A. Zharov, I. V. Shadrivov, and N. A. Zharova, Grading Plasmonic Nanoparticles with Light, Phys. Rev. A 93, 013814 (2016).
- Х. Гиббс, Оптическая бистабильность. Управление светом с помощью света, Мир, Москва (1988).
- Y. D. Chong, Li Ge, and A. D. Stone, Pt-Symmetry Breaking and Laser-Absorber Modes in Optical Scattering Systems, Phys. Rev. Lett. 106, 093902 (2011).
补充文件
