ON THE INFLUENCE OF ELECTRON BEAM CHARACTERISTICS ON HARMONIC RADIATION IN SINGLE-PASS FREE-ELECTRON LASERS
- Authors: Zhukovskiy K.V.1
-
Affiliations:
- Lomonosov Moscow State University, Faculty of Physics
- Issue: Vol 166, No 5 (2024)
- Pages: 588-602
- Section: ATOMS, MOLECULES, OPTICS
- URL: https://journals.rcsi.science/0044-4510/article/view/268668
- DOI: https://doi.org/10.31857/S0044451024110026
- ID: 268668
Cite item
Abstract
Currently, coherent radiation of free‑electron lasers (FEL) is increasingly being used in many fields of science and technology. In applied and theoretical research, an important effect is the nonlinear second harmonic generation in materials and on surfaces as a response to irradiation. FELs are used as light sources that generate coherent radiation in the range from visible to X‑ray. However, the second harmonic of the FEL itself is undesirable as it masks the studied response at the same frequency. We analytically investigate the influence of electron beam parameters on FEL radiation; study the generation of harmonics, especially the second; analyze the main factors causing the appearance of the second harmonic in the FEL spectrum. The influence of beam parameters is examined: cross‑section, emittance, Twiss parameters, and energy spread, both separately and together, on the gain length and FEL harmonic generation using the well‑documented LEUTL FEL as an example. The effect of these parameters on the radiation power of harmonics, especially the second, is analyzed. The influence of the undulator field harmonic on FEL harmonic radiation is also investigated. It is proposed to increase the electron energy spread twofold to the maximum possible value that ensures electron bunching while simultaneously reducing the second harmonic content in the FEL spectrum by one to two orders of magnitude. It is also suggested to use a weak undulator field harmonic for the same purpose – to suppress the FEL harmonic.
About the authors
K. V. Zhukovskiy
Lomonosov Moscow State University, Faculty of Physics
Author for correspondence.
Email: zhukovsk@physics.msu.ru
Russian Federation, 119991, Moscow
References
- В.Л. Гинзбург, Изв.АН СССР (Физика) 11, 165 (1947).
- H. Motz, W. Thon, and R.N. J. Whitehurst, Appl. Phys. 24, 826 (1953).
- J.M. Madey, J.Appl.Phys. 42, 1906 (1971).
- G. Margaritondo, Rivista del Nuovo Cimento 40, 411 (2017).
- В. Г. Багров, Г.С. Бисноватый-Коган, В.А. Бордовицын и др., Теория излучения релятивистских частиц, Физматлит, Москва (2002).
- И.М. Тернов, В. В. Михайлин, В.Р. Халилов, Синхротронное излучение и его применения, Изд-во МГУ, Москва (1980).
- G. Margaritondo, Characteristics and Properties of Synchrotron Radiation, in Synchrotron Radiation, ed. by S. Mobilio, F. Boscherini, and C. Meneghini, Springer, Berlin, Heidelberg (2015).
- B.W. J. McNeil and N.R. Thompson, Nature Photonics 4, 814 (2010).
- C. Pellegrini, A. Marinelli, and S. Reiche, Rev.Mod. Phys. 88, 015006 (2016).
- P. Schmuser, M. Dohlus, J. Rossbach, and C. Behrens, Free-Electron Lasers in the Ultraviolet and XRay Regime, Springer Tracts Mod. Phys., 258, Cham (ZG): Springer Int.Publ. (2014).
- Z. Huang and K. J. Kim, Phys.Rev. ST Accel.Beams 10, 034801 (2007).
- G. Margaritondo and P.R. Ribic, J. Synchrotron Rad. 18, 101 (2011).
- E. L. Saldin, E.A. Schneidmiller, and M.V. Yurkov, The Physics of Free Electron Lasers, Springer-Verlag, Berlin, Heidelberg (2000).
- R. Bonifacio, C. Pellegrini, and L. Narducci, Opt. Comm. 50, 373 (1984).
- T. Sumi, M. Horio, T. Senoo et al., E-J. Surf. Sci.Nanotech. 20, 31 (2021), doi: 10.1380/ejssnt.2022-002.
- S. Shwartz, M. Fuchs, J. B. Hastings et al., Phys.Rev. Lett. 112, 163901 (2014).
- S. Yamamoto, T. Omi, H. Akai et al., Phys.Rev. Lett. 120, 223902 (2018).
- E. Berger, S. Jamnuch, C. Uzundal et al., arXiv: 2010.03134.
- R.K. Lam, S. L. Raj, T.A. Pascal et al., Phys.Rev. Lett. 120, 023901 (2018).
- L. Wu, S. Patankar, T. Morimoto et al., Nature Phys. 13, 350 (2016).
- M. Nuriya, S. Fukushima et al., Nature Commun. 7, 11557 (2016).
- C. P. Schwartz, S. L. Raj, S. Jamnuch et al., arXiv: 2005.01905.
- P. J. Campagnola and L.M. Loew, Nature Biotechnol. 21, 1356 (2003).
- T. Helk, E. Berger, S. Jamnuch et al., Sci.Adv. 7, 2265 (2021).
- G. Boyd, T. Bridges, and E. Burkhardt, IEEE J.Quant.Electron. 4, 515 (1968).
- G.C. Bhar, S. Das, and K. L. Vodopyanov, Appl. Phys.B 61, 187 (1995).
- K. Zhukovsky, Opt. Laser Technol. 131, 106311 (2020).
- K. Zhukovsky, Eur.Phys. J. Plus 136, 714 (2021).
- K. Zhukovsky, Ann.Phys. 533, 2100091 (2021).
- K. Zhukovsky, Rad.Phys.Chem. 189, 109698 (2021).
- K. Zhukovsky, Opt. Laser Technol. 143, 107296 (2021).
- K. Zhukovsky, Results Phys. 19, 103361 (2020).
- K. Zhukovsky and I. Fedorov, Symmetry 13, 135 (2021).
- J.R. Henderson, L.T. Campbell, H.P. Freund, and B.W. J. McNeil, New J. Phys. 18, 062003 (2016).
- H.P. Freund, P. J.M. van der Slot, D. L.A.G. Grimminck et al., New J. Phys. 19, 023020 (2017).
- H.P. Freund and P. J.M. van der Slot, New J.Phys. 20, 073017 (2018).
- P. Emma, R. Akre, J. Arthur et al., Nature Photonics 4, 641 (2010).
- D. Ratner, A. Brachmann, F. J. Decker et al., Phys.Rev. ST Accel.Beams 14, 060701 (2011).
- S.V. Milton, E. Gluskin, N.D. Arnold et al., Science 292, 2037 (2001).
- S.G. Biedron et al., Nucl. Instrum.Meth.A 483, 94 (2002).
- L. Giannessi et al., Phys.Rev. ST Accel.Beams 14, 060712 (2011).
- К.В.Жуковский, Изв. вузов. Физика 62, 109 (2019) [K.V. Zhukovsky, Russ.Phys. J. 62 (6), 1043 (2019)].
- H.P. Freund and P. J.M. van der Slot, J. Phys.Commun. 5, 085011 (2021).
- K. Zhukovsky and A. Kalitenko, J. Synchrotron Rad. 26, 159 (2019).
- К.В.Жуковский, А.М. Калитенко, Изв. вузов. Физика 62, 153 (2019) [K.V. Zhukovsky and A.M. Kalitenko, Russ.Phys. J. 62 (2), 354 (2019)].
- К.В.Жуковский, УФН 191, 318 (2021) [K.V.Zhukovsky, Physics-Uspekhi 64, 304 (2021)].
- B. Prakash, V. Huse, M. Gehlot, and G. Mishra, Optik 127, 1639 (2016).
- V. L. Bratman, N. S. Ginzburg, and M. I. Petelin, Opt.Comm. 30, 409 (1979).
- M. Xie, Nucl. Instrum.Meth.A 445, 59 (2000).
- M. Xie, Proc. 1995 Particle Accelerator Conf., IEEE, Piscataway, NJ, 183 (1995).
- G. Dattoli, P. L. Ottaviani, and S. Pagnutti, J.Appl. Phys. 97, 113102 (2005).
- G. Dattoli, L. Giannessi, P. L. Ottaviani, and C. Ronsivalle, J.Appl.Phys. 95, 3206 (2004).
- L. Giannessi, Seeding and Harmonic Generation in Free-Electron Lasers, Synchrotron Light Sources and Free-Electron Lasers, ed. by E. J. Jaeschke et al., Switzerland, Springer Int.Publ. (2016), DOI: 10.1007/ 978-3-319-14394-1_3.
- Z. Huang and K.-J. Kim, Nucl. Instrum.Meth.A 475, 112 (2001).
- G. Geloni, E. Saldin, E. Schneidmiller, and M. Yurkov, Opt.Comm. 271, 207 (2007).
- K. Zhukovsky, I. Fedorov, and N. Gubina, Opt. Laser Technol. 159, 108972 (2023).
- K. Zhukovsky, Europhys. Lett. 141, 45002 (2023).
- К.В.Жуковский, ЖЭТФ 164, 315 (2023) [K.V. Zhukovsky, JETP 137, 271 (2023)].
- A.V. Savilov and G. S. Nusinovich, Phys.Plasmas 14, 053113 (2007).
- D.D. Krygina, N.Y. Peskov, and A.V. Savilov, Frequency Multiplication in a Powerful Terahertz FreeElectron Maser, 2021 46th Int.Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Chengdu, China (2021), doi: 10.1109/IRMMWTHz50926.2021.9567533.
- A.V. Savilov and G. S. Nusinovich, Phys.Plasmas 15, 013112 (2008).
- А.М. Калитенко, К.В.Жуковский, ЖЭТФ 157, 394 (2020) [A.M. Kalitenko and K.V. Zhukovskii, JETP 130, 327 (2020)].
Supplementary files
