DETECTION OF METRONIDAZOLE AND FAMPRIDINE BY NMR AT ZERO AND ULTRALOW MAGNETIC FIELD
- Authors: Burueva D.B1, Eills J.2,3,4, Picazo-Frutos R.2,3,4, Kovtunov K.V1, Budker D.2,3,4,5, Koptyug I.V1
-
Affiliations:
- International Tomography Center Siberian Branch of Russian Academy of Sciences
- Helmholtz-Institut Mainz
- GSI Helmholtzzentrum für Schwerionenforschung GmbH
- Institute of Physics, Johannes Gutenberg-Universität
- Department of Physics, University of California
- Issue: Vol 166, No 4 (2024)
- Pages: 566-570
- Section: Articles
- URL: https://journals.rcsi.science/0044-4510/article/view/268183
- DOI: https://doi.org/10.31857/S0044451024100134
- ID: 268183
Cite item
Abstract
In this work the biocompatible molecules — metronidazole and fampridine — were successfully hyperpolarized using parahydrogen via the signal amplification by reversible exchange approach. The nuclear magnetic resonance (NMR) signals from both molecules were detected at zero- to ultralow magnetic field (ZULF) using commercially available rubidium vapor magnetometer from QuSpin.
About the authors
D. B Burueva
International Tomography Center Siberian Branch of Russian Academy of Sciences
Author for correspondence.
Email: burueva@tomo.nsc.ru
Russian Federation, 630090, Novosibirsk
J. Eills
Helmholtz-Institut Mainz; GSI Helmholtzzentrum für Schwerionenforschung GmbH; Institute of Physics, Johannes Gutenberg-Universität
Email: burueva@tomo.nsc.ru
Mainz, Germany; Darmstadt, Germany; Mainz, Germany
R. Picazo-Frutos
Helmholtz-Institut Mainz; GSI Helmholtzzentrum für Schwerionenforschung GmbH; Institute of Physics, Johannes Gutenberg-Universität
Email: burueva@tomo.nsc.ru
Mainz, Germany; Darmstadt, Germany; Mainz, Germany
K. V Kovtunov
International Tomography Center Siberian Branch of Russian Academy of Sciences
Email: burueva@tomo.nsc.ru
Russian Federation, Novosibirsk
D. Budker
Helmholtz-Institut Mainz; GSI Helmholtzzentrum für Schwerionenforschung GmbH; Institute of Physics, Johannes Gutenberg-Universität; Department of Physics, University of California
Email: burueva@tomo.nsc.ru
Mainz, Germany; Darmstadt, Germany; Mainz, Germany; Berkeley, USA
I. V Koptyug
International Tomography Center Siberian Branch of Russian Academy of Sciences
Email: koptyug@tomo.nsc.ru
Russian Federation, Novosibirsk
References
- B. Blümich, TrAC Trends in Anal. Chem. 83, 2 (2016).
- J. Mitchell, L. F. Gladden, T. C. Chandrasekera et al., Prog. Nucl. Magn. Reson. Spectrosc. 76, 1 (2014).
- NMR Logging Applications, in Handbook of Geophysical Exploration: Seismic Exploration, Vol. 32, ed. by K.-J. Dunn, D. J. Bergman, and G. A. Latorraca, Nuclear Magnetic Resonance Petrophysical and Logging Applications, Pergamon (2002), pp. 129–164.
- M. P. Augustine, D. M. TonThat, and J. Clarke, Solid State Nucl. Magn. Reson. 11, 139 (1998).
- J. Meinel, M. Kwon, R. Maier et al., Commun. Phys. 6, 302 (2023).
- I. M. Savukov and M. V. Romalis, Phys. Rev. Lett. 94, 123001 (2005).
- M. C. D. Tayler and S. Bodenstedt, J. Magn. Reson. 362, 107665 (2024).
- D. B. Burueva, J. Eills, J. W. Blanchard et al., Angew. Chem. Int. Ed. 59, 17026 (2020).
- J. Eills, D. Budker, S. Cavagnero et al., Chem. Rev. 123, 1417 (2023).
- R. Picazo-Frutos, Q. Stern, J. W. Blanchard et al., Anal. Chem. 95, 720 (2023).
- T. Theis, P. Ganssle, G. Kervern et al., Nature Phys. 7, 571 (2011).
- C. R. Bowers and D. P. Weitekamp, J. Am. Chem. Soc. 109, 5541 (1987).
- R. W. Adams, J. A. Aguilar, K. D. Atkinson et al., Science 323, 1708 (2009).
- D. A. Barskiy, S. Knecht, A. V. Yurkovskaya et al., Prog. Nucl. Magn. Reson. Spectrosc. 114-115, 33(2019).
- P. J. Rayner, M. J. Burns, A. M. Olaru et al., Proc. Natl. Acad. Sci. 114, E3188 (2017).
- R. V. Shchepin, D. A. Barskiy, D. M. Mikhaylov et al., Bioconjug. Chem. 27, 878 (2016).
- H. Zeng, J. Xu, J. Gillen et al., J. Magn. Reson. 237, 73 (2013).
- E. J. Fear, A. J. Kennerley, P. J. Rayner et al., Magn. Reson. Med. 88, 11 (2022).
- R. V. Shchepin, J. R. Birchall, N. V. Chukanov et al., Chem. Eur. J. 25, 8829 (2019).
- O. G. Salnikov, N. V. Chukanov, A. Svyatova et al., Angew. Chem. Int. Ed. 60, 2406 (2021).
- H. De Maissin, P. R. Gro, O. Mohiuddin et al., Angew. Chem. Int. Ed. 62, e202306654 (2023).
- K. MacCulloch, A. Browning, D. O. Guarin Bedoya et al., J. Magn. Reson. Open 16-17, 100129 (2023).
- T. Theis, M. P. Ledbetter, G. Kervern et al., J. Am. Chem. Soc. 134, 3987 (2012).
- J. W. Blanchard, B. Ripka, B. A. Suslick et al., Magn. Reson. Chem. 59, 1208 (2021).
- P. Put, S. Alcicek, O. Bondar et al., Commun. Chem. 6, 1 (2023).
- E. T. Van Dyke, J. Eills, R. Picazo-Frutos et al., Sci. Adv. 8, eabp9242 (2022).
- J. Dunn and A. Blight, Curr. Med. Res. Opin. 27, 1415 (2011).
- S. A. Dingsdag and N. Hunter, J. Antimicrob. Chemother. 73, 265 (2018).
- D. A. Barskiy, R. V. Shchepin, A. M. Coffey et al., J. Am. Chem. Soc. 138, 8080 (2016).
- D. O. Guarin, S. M. Joshi, A. Samoilenko et al., Angew. Chem. Int. Ed. 62, e202219181 (2023).
- A. I. Trepakova, I. V. Skovpin, N. V. Chukanov et al., J. Phys. Chem. Lett. 13, 10253 (2022).
- J. Osborne, J. Orton, O. Alem et al., Proc. SPIE 10548, 105481G (2018).
- J. Dupont-Roc, S. Haroche, and C. CohenTannoudji, Phys. Lett. A 28, 638 (1969).
- J. W. Blanchard, T. Wu, J. Eills et al., J. Magn. Reson. 314, 106723 (2020).
- Q. Stern and K. Sheberstov, Magn. Reson. 4, 87 (2023).
- N. V. Chukanov, O. G. Salnikov, I. A. Trofimov et al., ChemPhysChem 22, 960 (2021).
- D. A. Barskiy, K. V. Kovtunov, I. V. Koptyug et al., J. Am. Chem. Soc. 136, 3322 (2014).
Supplementary files
