RABI OSCILLATIONS AT THREE-PHOTON LASER EXCITATION OF A SINGLE RUBIDIUM RYDBERG ATOM IN AN OPTICAL DIPOLE TRAP
- Authors: Beterov I.I1,2,3,4, Yakshina E.A1,2,4, Suliman G.1,2, Betleni P.I1,2, Prilutskaya A.A1,2, Skvortsova D.A1,3, Zagirov T.R1,2, Tret'yakov D.B1,2, Entin V.M1, Bezuglov N.N1,5, Ryabtsev I.I1,2
-
Affiliations:
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences
- Novosibirsk State University
- Novosibirsk State Technical University
- Institute of Laser Physics, Siberian Branch of the Russian Academy of Sciences
- Saint Petersburg State University
- Issue: Vol 166, No 4 (2024)
- Pages: 535-547
- Section: Articles
- URL: https://journals.rcsi.science/0044-4510/article/view/268180
- DOI: https://doi.org/10.31857/S0044451024100109
- ID: 268180
Cite item
Abstract
In an experiment on three-photon laser excitation 5S1/2 → 5P3/2 → 6S1/2 → 37P3/2 of a single 87Rb, Rydberg atom in an optical dipole trap, we have observed for the first time three-photon Rabi oscillations between the ground and the Rydberg states. A single atom was detected optically by resonance fluorescence signal using a low-noise sCMOS video camera. The relative probability for the atom to remain in the trap after the action of three synchronized exciting laser pulses with durations varying from 100 ns to 2 µs was measured. A distinctive feature of the experiment was the use of intense laser radiation with a wavelength of 1367 nm at the second excitation step, providing a single-photon Rabi frequency up to 2 GHz to control the effective detunings of intermediate levels of the three- photon transition due to the dynamic Stark effect. Rabi oscillations with frequencies from 1 to 5 MHz were registered depending on the intensity of laser pulses of the first and second excitation steps with coherence time 0.7–0.8 µs. Ways to increase the coherence time and contrast of three-photon Rabi oscillations for applications in quantum information with Rydberg atoms are discussed.
About the authors
I. I Beterov
Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences; Novosibirsk State University; Novosibirsk State Technical University; Institute of Laser Physics, Siberian Branch of the Russian Academy of Sciences
Email: beterov@isp.nsc.ru
Russian Federation, Novosibirsk, 630090; Novosibirsk, 630090; Novosibirsk, 630073; Novosibirsk, 630090
E. A Yakshina
Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences; Novosibirsk State University; Institute of Laser Physics, Siberian Branch of the Russian Academy of Sciences
Email: beterov@isp.nsc.ru
Russian Federation, Novosibirsk, 630090; Novosibirsk, 630090;Novosibirsk, 630090
G. Suliman
Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences; Novosibirsk State University
Email: beterov@isp.nsc.ru
Russian Federation, Novosibirsk, 630090; Novosibirsk, 630090
P. I Betleni
Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences; Novosibirsk State University
Email: beterov@isp.nsc.ru
Russian Federation, Novosibirsk, 630090; Novosibirsk, 630090
A. A Prilutskaya
Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences; Novosibirsk State University
Email: beterov@isp.nsc.ru
Russian Federation, Novosibirsk, 630090; Novosibirsk, 630090
D. A Skvortsova
Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences; Novosibirsk State Technical University
Email: beterov@isp.nsc.ru
Russian Federation, Novosibirsk, 630090; Novosibirsk, 630073
T. R Zagirov
Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences; Novosibirsk State University
Email: beterov@isp.nsc.ru
Russian Federation, Novosibirsk, 630090; Novosibirsk, 630090
D. B Tret'yakov
Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences; Novosibirsk State University
Email: beterov@isp.nsc.ru
Russian Federation, Novosibirsk, 630090; Novosibirsk, 630090
V. M Entin
Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences
Email: beterov@isp.nsc.ru
Russian Federation, Novosibirsk, 630090
N. N Bezuglov
Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences; Saint Petersburg State University
Email: beterov@isp.nsc.ru
Russian Federation, Novosibirsk, 630090; Saint Petersburg, 199034
I. I Ryabtsev
Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences; Novosibirsk State University
Author for correspondence.
Email: ryabtsev@isp.nsc.ru
Russian Federation, Novosibirsk, 630090; Novosibirsk, 630090
References
- S. J. Evered, D. Bluvstein, M. Kalinowski, et al., Nature 622, 268 (2023).
- H. J. Manetsch, G. Nomura, E. Bataille, K.˝. Leung, X. Lv, and M. Endres, arXiv: 2403.12021 (https://arxiv.org/abs/2403.12021).
- T. F. Gallagher, Rydberg Atoms, Cambridge University Press, Cambridge (1994).
- D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Cote, M. D. Lukin, Phys. Rev. Lett. 85, 2208 (2000).
- M. Saffman, J. Phys. B 49, 202001 (2016).
- L. Henriet, L. Beguin, A. Signoles, T. Lahaye, A. Browaeys, G.-O. Reymond, and C. Jurczak, Quantum 4, 327 (2020).
- T. Cubel, B. K. Teo, V. S. Malinovsky, J. R. Guest, A. Reinhard, B. Knuffman, P. R. Berman, and G. Raithel, Phys. Rev. A 72, 023405 (2005).
- M. Reetz-Lamour, J. Deiglmayr, T. Amthor, and M. Weidemuller, New J. Phys. 10, 045026 (2008).
- T. M. Graham, Y. Song, J. Scott et al., Nature 604, 457 (2022).
- P. Thoumany, T. Hansch, G. Stania, L. Urbonas, and Th. Becker, Opt. Lett. 34, 1621 (2009).
- V. A. Sautenkov, S. A. Saakyan, A. A. Bobrov, E.V. ˙ Vilshanskaya, B. B. Zelener, and B. V. Zelener, ˙ J. Opt. Soc. Am. B 35, 1546 (2018).
- P. Cheinet, K.-L. Pham, P. Pillet, I. I. Beterov, I. N. Ashkarin, D. B. Tretyakov, E. A. Yakshina, V. M. Entin, and I. I. Ryabtsev, Quantum Electronics 50, 213 (2020)].
- I. N. Ashkarin, I. I. Beterov, E. A. Yakshina, D. B. Tretyakov, V. M. Entin, I. I. Ryabtsev, P. Cheinet, K.-L. Pham, S. Lepoutre, and P. Pillet, Phys. Rev. A 106, 032601 (2022).
- I. I. Ryabtsev, I. I. Beterov, D. B. Tretyakov, V. M. Entin, E. A. Yakshina, Phys. Rev. A 84, 053409 (2011).
- V. M. Entin, E. A. Yakshina, D. B. Tretyakov, I. I. Beterov, and I. I. Ryabtsev, JETP 116, 721 (2013)].
- E. A. Yakshina, D. B. Tretyakov, V. M. Entin, I. I. Beterov, and I. I. Ryabtsev, Quantum Electronics 48, 886 (2018)].
- E. A. Yakshina, D. B. Tretyakov, V. M. Entin, I. I. Beterov, I. I. Ryabtsev, JETP 130, 170 (2020)].
- D. B. Tretyakov, V. M. Entin, E. A. Yakshina, I. I. Beterov, and I. I. Ryabtsev, Quantum Electronics 52, 513 (2022)].
- I. I. Beterov, E. A. Yakshina, D. B. Tretyakov, N. V. Al’yanova, D. A. Skvortsova, G. Suliman, T. R. Zagirov, V. M. Entin, and I. I. Ryabtsev, JETP 137, 246 (2023)].
- G. S. Agarwal, Phys. Rev. Lett. 37, 1383 (1976).
- S. M. Bohaichuk, F. Ripka, V. Venu, F. Christaller, C. Liu, M. Schmidt, H. Kobler, and J. P. Shaffer, arXiv: 2304.07409 (https://arxiv.org/abs/2304.07409).
Supplementary files
