MICROWAVE RADIATION TRANSITIONS BETWEEN TRIPLET RYDBERG STATES OF ALKALINE-EARTH-LIKE ELEMENTS OF GROUP IIB IIB (Zn, Cd, Hg) AND YTTERBIUM Yb

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Numerical values of quantum defects us ed for calculations of frequencies and matrix elements of dipole radiation transitions in the microwave range between triplet Rydberg states n3S1, n3P1, n3D2 and n3F3 series of Group IIb atoms with large principal quantum numbers have been determined n > 20. The calculation results within semi-empirical methods of quantum defect theory and Fues model potential are approximated by quadratic polynomials. The polynomial coefficients are tabulated along with numerical values of frequencies and matrix elements and can be used for measuring field strengths through microwave-induced splitting of electromagnetically induced transparency resonance, for development and planning of studies of microwave radiation characteristics using Rydberg atoms.

作者简介

A. Kamenskiy

Voronezh State University

Email: san40@bk.ru
俄罗斯联邦, 394018, Voronezh

I. Glukhov

Voronezh State University

Email: san40@bk.ru
俄罗斯联邦, 394018, Voronezh

A. Kornev

Voronezh State University

Email: san40@bk.ru
俄罗斯联邦, 394018, Voronezh

N. Manakov

Voronezh State University

Email: san40@bk.ru
俄罗斯联邦, 394018, Voronezh

V. Ovsyannikov

Voronezh State University; Federal State Unitary Enterprise "VNIIFTRI"

Email: san40@bk.ru
俄罗斯联邦, 394018, Voronezh; Mendeleevo, Moscow Region, 141570

V. Pal'chikov

Federal State Unitary Enterprise "VNIIFTRI"; National Research Nuclear University MEPhI

编辑信件的主要联系方式.
Email: san40@bk.ru
俄罗斯联邦, Mendeleevo, Moscow Region, 141570; Moscow, 115409

参考

  1. J. A. Sedlacek, A. Schwettmann, H. K¨ubler, R. L¨ow, T. Pfau, and J. P. Shaffer, Microwave Electrometry with Rydberg Atoms in a Vapour Cell Using Bright Atomic Resonances, Nat. Phys. 8, 819 (2012).
  2. C. L. Holloway, J. A. Gordon, S. Jefferts, A. Schwarzkopf, D. A. Anderson, S. A. Miller, N. Thaicharoen, and G. Raithel, Broadband Rydberg Atom-Based Electric-Field Probe for SI-Traceable, Self-Calibrated Measurements, IEEE Trans. Antennas Propag. 62, 6169 (2014).
  3. H. Fan, S. Kumar, J. Sedlacek, H. K¨ubler, Sh. Karimkashi, and J. P. Shaffer, Atom Based RF Electric Field Sensing, J. Phys. B: Atom. Mol. Opt. Phys. 48, 202001 (2015).
  4. C. L. Holloway, M. T. Simons, J. A. Gordon, J. A. Gordon, P. F. Wilson, C. M. Cooke, D. A. Anderson, and G. Raithel, Atom-Based RF Electric Field Metrology: from Self-Calibrated Measurements to Subwavelength and Near-Field Imaging, IEEE Trans. Electromagn. Compat. 59, 717 (2017).
  5. D. A. Anderson and G. Raithel, ContinuousFrequency Measurements of High-Intensity Microwave Electric Fields with Atomic Vapor Cells, Appl. Phys. Lett. 111, 053504 (2017).
  6. Y. Jiao, L. Hao, X. Han, S. Bai, G. Raithel, J. Zhao, and S. Jia, Atom-Based Radio-Frequency Field Calibration and Polarization Measurement Using Cesium nDJ Floquet States, Phys. Rev. Appl. 8, 014028 (2017).
  7. Z. Song, Z. Feng, X. Liu, D. Li, H. Zhang, J. Liu, and L. Zhang, Quantum-Based Determination of Antenna Finite Range Gain by Using Rydberg Atoms, IEEE Antennas Wireless Propag. Lett. 16, 1589 (2017).
  8. M. T. Simons, J. A. Gordon, and C. L. Holloway, Fiber-Coupled Vapor Cell for a Portable Rydberg Atom-Based Radio Frequency Electric Field Sensor, Appl. Opt. 57, 6456 (2018).
  9. Z. Song, H. Liu, X. Liu, W. Zhang, H. Zou, J. Zhang, and J. Qu, Rydberg-Atom-Based Digital Communication Using a Continuously Tunable Radio-Frequency Carrier, Opt. Express 27, 8848 (2019).
  10. E. F. Stelmashenko, O. A. Klezovich, V. N. Baryshev, V. A. Tishchenko, I. Yu. Blinov, V. G. Palchikov, and V. D. Ovsyannikov, Measuring the Electric Field Strength of Microwave Radiation at the Frequency of the Radiation Transition between Rydberg States of Atoms 85Rb, Opt. Spectrosc. 128, 1067 (2020)].
  11. V. D. Ovsiannikov, V. G. Palchikov, and I. L. Glukhov, Microwave Field Metrology Based on Rydberg States of Alkali-Metal Atoms, Photonics 9, 635 (2022).
  12. I. L. Glukhov, A. A. Kamenski, V. D. Ovsiannikov, and V. G. Pal’chikov, Precision Spectroscopy of Rydberg States in Alkaline Earth Atoms for Millimeter-Wave Radiation Measurement, JETP 137, 169 (2023)].
  13. I. L. Glukhov, A. A. Kamenski, V. D. Ovsiannikov, and V. G. Palchikov, Precision Spectroscopy of Radiation Transitions between Singlet Rydberg States of the Group IIb and Yb Atoms, Photonics 10, 1153 (2023).
  14. H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms, Springer-Verlag, Berlin – G¨ottingen – Heidelberg, Germany (1957)].
  15. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Nonrelativistic Theory, Pergamon Press, Oxford, UK (1989), Secs. 39, 40.
  16. Y.-Li. Zhou, D. Yan, and W. Li, Rydberg Electromagnetically Induced Transparency and Absorption of Strontium Triplet States in a Weak Microwave Field, Phys. Rev. A 105, 053714 (2022).
  17. , February 16]. National Institute of Standards and Technology, Gaithersburg, MD.
  18. V. V. Kazakov, V. G. Kazakov, V. S. Kovalev, O. I. Meshkov, and A. S. Yatsenko, Electronic Structure of Atoms: Atomic Spectroscopy Information System, Phys. Scripta 92, 105002 (2017).
  19. A. K. Mohapatra, T. R. Jackson, and C. S. Adams, Coherent Optical Detection of Highly Excited Rydberg States Using Electromagnetically Induced Transparency, Phys. Rev. Lett. 98, 113003 (2007).
  20. F. B. Dunning, T. C. Killian, S. Yoshida, and J. Burgd¨orfer, Recent Advances in Rydberg Physics Using Alkaline-Earth Atoms, J. Phys. B: Atom. Mol. Opt. Phys. 49, 112003 (2016).
  21. M. J. Seaton, Quantum Defect Theory, Rep. Prog. Phys. 46, 167 (1983).
  22. W. C. Martin, Series Formulas for the Spectrum of Atomic Sodium (Na I), J. Opt. Soc. Amer. 70, 784 (1980).
  23. F. Robicheaux, Calculations of Long Range Interactions for 87Sr Rydberg States, J. Phys. B: Atom. Mol. Opt. Phys. 52, 244001 (2019).
  24. D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum: Irreducible Tensors, Spherical Harmonics, Vector Coupling Coefficients, 3nj Symbols, World Scientific, Singapore (1988)].
  25. I. I. Sobelman, An Introduction to the Theory of Atomic Spectra, Pergamon Press, London, UK (1972)].
  26. N. L. Manakov, V. D. Ovsiannikov, and L. P. Rapoport, Atoms in a Laser Field, Phys. Rep. 141, 320 (1986).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».