COHERENCE EFFECTS OF MAGNETIC SUBLEVELS INDUCED BY A LINEARLY POLARIZED WAVE FIELD IN SATURATED ABSORPTION AND MAGNETIC SCANNING SPECTRA IN ATOMS WITH Λ- AND V-TYPE TRANSITIONS
- Authors: Saprykin E.G1, Chernenko A.A2
-
Affiliations:
- Institute of Automation and Electrometry Siberian Branch of the Russian Academy of Sciences
- Institute of Semiconductor Physics Siberian Branch of the Russian Academy of Sciences
- Issue: Vol 166, No 4 (2024)
- Pages: 460-474
- Section: Articles
- URL: https://journals.rcsi.science/0044-4510/article/view/268173
- DOI: https://doi.org/10.31857/S0044451024100031
- ID: 268173
Cite item
Abstract
It has been shown analytically and numerically that the effect of magnetic coherence (interference) of levels in L- and V-type transitions, induced by the field of a traveling linearly polarized electromagnetic (EM) wave of arbitrary intensity, can make a significant contribution both to the populations of transition levels (more ~50% than of the field contribution) and to the absorption resonance spectra during frequency and magnetic scanning. Differences in the manifestation of the magnetic coherence effect in level populations for open and closed types of transitions have been identified. It has been established that narrow coherent electromagnetically induced transparency (EIT) resonances are formed in the absorption resonance spectra during magnetic scanning near zero magnetic field. The dependencies of EIT resonance parameters on the characteristics of atomic transitions and EM wave intensity have been investigated. The contribution of the magnetic coherence effect of transition levels to the shape of these resonances has been revealed.
About the authors
E. G Saprykin
Institute of Automation and Electrometry Siberian Branch of the Russian Academy of Sciences
Email: chernen@isp.nsc.ru
Russian Federation, Novosibirsk, 630090
A. A Chernenko
Institute of Semiconductor Physics Siberian Branch of the Russian Academy of Sciences
Author for correspondence.
Email: chernen@isp.nsc.ru
Russian Federation, Novosibirsk, 630090
References
- Е. Б. Александров, УФН 107, 595 (1972).
- W. E. Bell and A. L. Bloom, Phys. Rev. Lett. 6, 280 (1961).
- Э. Г. Сапрыкин, А. А. Черненко, А.М. Шалагин, ЖЭТФ 146, 229 (2014).
- G. Alzetta, A. Gozzini, L. Moi et al., Nouvo Cim. B 36, 5 (1976).
- E. Arrimondo and G. Orriols, Lett. Nouvo Cim. 17, 333 (1976).
- F. M. Akulshin, S. Barreiro, and A. Lesama, Phys. Rev. A 57, 2996 (1998).
- А. В. Тайченачев, А. М. Тумайкин, В. И. Юдин, Письма в ЖЭТФ 69, 776 (1999).
- С.Г. Раутиан, Письма в ЖЭТФ 60, 462 (1994).
- S. K. Kim, H. S. Moon, K. Kim et al., Phys. Rev. A 61, 063813 (2003).
- Д. В. Бражников, А. В. Тайченачев, А. М. Тумайкин и др., Письма в ЖЭТФ 91, 694 (2010).
- С. Goren, A. D. Wilson-Gordon, M. Rosenbluh et al., Phys. Rev. A 67, 033807 (2003).
- Д. В. Лазебный, Д. В. Бражников, А. В. Тайченачев и др., ЖЭТФ 148, 1068 (2015).
- Э. Г. Сапрыкин, А. А. Черненко, А.М. Шалагин, ЖЭТФ 150, 238 (2016).
- С. Г. Раутиан, Г. И. Смирнов, А. М. Шалагин, Нелинейные резонансы в спектрах атомов и молекул, Наука, Новосибирск (1979), с. 310.
- А. М. Шалагин, Основы нелинейной спектроскопии высокого разрешения, НГУ, Новосибирск (2008).
- Э. Г. Сапрыкин, А. А. Черненко, ЖЭТФ 154, 235 (2018).
- Э. Г. Сапрыкин, А. А. Черненко, КЭ 49, 479 (2019).
- Э. Г. Сапрыкин, А. А. Черненко, КЭ 52, 560 (2022).
- A. Chernenko and E. Saprykin, Amer. J. Opt. Phot. 8, 51 (2020).
- В. С. Летохов, В. П. Чеботаев, Принципы нелинейной лазерной спектроскопии, Наука, Москва (1975), с. 512.
- Э. Г. Сапрыкин, А. А. Черненко, Опт. и спектр. 127, 671 (2019).
Supplementary files
