SPECIFICITY OF τ - APPROXIMATION FOR CHAOTIC ELECTRON TRAJECTORIES ON COMPLEX FERMI SURFACES
- Authors: Mal'tsev A.Y.1
-
Affiliations:
- Landau Institute for Theoretical Physics
- Issue: Vol 166, No 3 (2024)
- Pages: 409-421
- Section: Articles
- URL: https://journals.rcsi.science/0044-4510/article/view/268168
- DOI: https://doi.org/10.31857/S0044451024090116
- ID: 268168
Cite item
Abstract
The work examines a special behavior of the magnetic conductivity of metals that arises when chaotic electron trajectories appear on the Fermi surface. This behavior is due to the scattering of electrons at singular points of the dynamic system describing the electron motion in p- space, and caused by small-angle scattering of electrons on phonons. In this situation, the electronic system is described by a “non-standard” relaxation time, which plays the main role in a certain range of temperature and magnetic field values.:
About the authors
A. Ya. Mal'tsev
Landau Institute for Theoretical Physics
Author for correspondence.
Email: maltsev@itp.ac.ru
Russian Federation, 142432 Chernogolovka, pr. Ak. Semenova 1, Moscow region
References
- И. М. Лифшиц, М. Я. Азбель, М. И. Каганов, ЖЭТФ 31, 63 (1956).
- И. М. Лифшиц, В. Г. Песчанский, ЖЭТФ 35, 1251 (1958).
- И. М. Лифшиц, В. Г. Песчанский, ЖЭТФ 38, 188 (1960).
- И. М. Лифшиц, М. Я. Азбель, М. И. Каганов, Электронная теория металлов, Наука, Москва (1971).
- Ч. Киттель, Квантовая теория твердых тел, Наука, Москва (1967).
- А. А. Абрикосов, Основы теории металлов, Наука, Москва (1987).
- С.П. Новиков, УМН 37, 3 (1982).
- А.В. Зорич, УМН 39, 235 (1984).
- И.А. Дынников, УМН 47, 161 (1992).
- С.П. Царев, Частное сообщение (1992-1993).
- И. А. Дынников, Математические заметки 53, 57 (1993).
- A. V. Zorich, in: Proc. Geometric Study of Foliations, Tokyo, November 1993, ed. by T. Mizutani et al., World Scientific, Singapore (1994), p.479.
- I. A. Dynnikov, Surfaces in 3-Torus: Geometry of Plane Sections, Proc. of ECM2, BuDA (1996).
- I. A. Dynnikov, Amer. Math. Soc. Transl. Ser. 2, 179, AMS, Providence, RI (1997), p. 45.
- И.А. Дынников, УМН 54, 21 (1999).
- С. П. Новиков, А. Я. Мальцев, Письма в ЖЭТФ 63, 809 (1996).
- С. П. Новиков, А. Я. Мальцев, УФН 168, 249 (1998).
- A. Ya. Maltsev and S. P. Novikov, Solid State Phys., Bulletin of Braz. Math. Society, New Series 34, 171 (2003).
- A. Ya. Maltsev and S. P. Novikov, J. Stat. Phys. 115, 31 (2004).
- А. Я. Мальцев, ЖЭТФ 112, 1710 (1997).
- А. Я. Мальцев, С. П. Новиков, Труды МИАН 302, 296 (2018).
- А. Я. Мальцев, ЖЭТФ 154, 1183 (2018)
- А. Я. Мальцев, ЖЭТФ 156, 140 (2019)
- А. Я. Мальцев, ЖЭТФ 164, 817 (2023)
- A. V. Zorich, Annales de l’Institut Fourier 46, 325 (1996)
- A. Zorich, On Hyperplane Sections of Periodic Surfaces., Solitons, Geometry, and Topology: on the Crossroad, ed. by V. M. Buchstaber and S. P. Novikov, Translations of the AMS, Ser. 2, 179, AMS, Providence, RI (1997), p.173, DOI: http://dx.doi.org/10.1090/trans2/179.
- A. Zorich, How Do the Leaves of Closed 1-Form Wind Around a Surface, Pseudoperiodic Topology, ed. by V. I. Arnold, M. Kontsevich, A. Zorich, Translations of the AMS, Ser. 2, 197, AMS, Providence, RI (1999), p.135, DOI: http://dx.doi.org/10.1090/trans2/197.
- Р. Де Лео, УМН 55, 181 (2000)
- Р. Де Лео, УМН 58, 197 (2003)
- A. Zorich, Flat Surfaces, in Collect. Frontiers in Number Theory, Physics and Geometry. Vol. 1: On Random Matrices, Zeta Functions and Dynamical Systems, Ecole de Physique des Houches, France, March 9-21 (2003) ed. by P. Cartier, B. Julia, P. Moussa, and P. Vanhove, Springer-Verlag, Berlin (2006), p. 439.
- Р. Де Лео, И.А. Дынников, УМН 62, 151 (2007)
- R. De Leo and I. A. Dynnikov, Geom. Dedicata 138, 51 (2009).
- И. А. Дынников, Труды МИАН 263, 72 (2008)
- A. Skripchenko, Discrete Contin. Dyn. Sys. 32, 643 (2012).
- A. Skripchenko, Ann. Glob. Anal. Geom. 43, 253 (2013).
- I. Dynnikov, A. Skripchenko., On Typical Leaves of a Measured Foliated 2-Complex of Thin Type; Topology, Geometry, Integrable Systems, and Mathematical Physics: Novikov’s Seminar 2012-2014, Adv. Math. Sci., Amer. Math. Soc. Transl. Ser. 2, 234, ed. by V. M. Buchstaber, B. A. Dubrovin, I. M. Krichever, Translations of the AMS, Providence, RI (2014), p. 173, arXiv: 1309.4884.
- I. Dynnikov and A. Skripchenko, Symmetric Band Complexes of Thin Type and Chaotic Sections Which Are Not Actually Chaotic, Trans. Moscow Math. Soc., 76 (2015), p. 287.
- A. Avila, P. Hubert, and A. Skripchenko, Inven-tiones Mathematicae 206, 109 (2016).
- A. Avila, P. Hubert, and A. Skripchenko, Bulletin De La Societe Mathematique De France 144, 539 (2016).
- I. Dynnikov, P. Hubert, and A. Skripchenko, International Mathematics Research Notices IMRN (2022) (Published online), arXiv 2011.15043.
Supplementary files
