ATOMIC MECHANISM OF THE INFLUENCE OF ELASTIC DEFORMATIONS IN EPITAXIAL Ge LAYERS ON THE SURFACE Si(111) ON THE DIFFUSION OF Ge ADATOMS
- Authors: Zhachuk R.A.1
-
Affiliations:
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences
- Issue: Vol 166, No 2 (2024)
- Pages: 232-237
- Section: Articles
- URL: https://journals.rcsi.science/0044-4510/article/view/261687
- DOI: https://doi.org/10.31857/S004445102408008X
- ID: 261687
Cite item
Abstract
Using density functional theory calculations, the atomic mechanism of the influence of compressive strains formed on the Ge(111) – 7 × 7 surface of epitaxial layers , grown on Si(111) substrate, on the diffusion of Ge adatoms was investigated. It was found that the energy barrier limiting the migration of Ge adatoms over long distances is located near corner vacancies of the 7 × 7 structure and is caused by the formation of a covalent bond between the Ge adatom and a dimer atom within the 7 × 7 structure. It is shown that the barrier increase on the elastically compressed surface occurs due to strengthening of the dimer bond during surface compression, which leads to weakening of the bond between the Ge adatom and the dimer atom.
About the authors
R. A. Zhachuk
Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences
Author for correspondence.
Email: zhachuk@gmail.com
Russian Federation, 630090, Novosibirsk
References
- H. Brune, K. Bromann, H. R¨oder, K. Kern, J. Jacobsen, P. Stoltze, K. Jacobsen, and J. Nørskov, Phys. Rev.B 52, R14380(R) (1995).
- Ratsch, A.P. Seitsonen, and M. Scheffler, Phys. Rev.B 55, 6750 (1997).
- O.P. Pchelyakov, A.V. Dvurechensky, A.V. Latyshev, and A. L. Aseev, Semicond. Sci.Technol. 26, 014027 (2010).
- V. Cherepanov and B. Voigtl¨ander, Phys.Rev.B 69, 125331 (2004).
- V. Cherepanov and B. Voigtl¨ander, Appl.Phys. Lett. 81, 4745 (2002).
- Takayanagi, Y. Tanishiro, S. Takahashi, and M. Takahashi, Surf. Sci. 164, 367 (1985).
- H. J. Gossmann, J. C. Bean, L. C. Feldman, E. G. McRae, and I. K. Robinson. Phys.Rev. Lett. 55, 1106 (1985).
- R. Zhachuk, S. Teys, and J. Coutinho, J.Chem.Phys. 138, 224702 (2013).
- J.M. Soler, E. Artacho, J.D. Gale, A. Garc´ia, J. Junquera, P. Ordej´on, and D. Sanchez-Portal, J.Phys. Condens.Matter 14, 2745 (2002).
- P. Perdew, K. Burke, and M. Ernzerhof, Phys.Rev. Lett. 77, 3865 (1996).
- Р.А.Жачук, С.А. Тийс, Б. З. Ольшанецкий, ЖЭТФ 140, 1113 (2011).
- C.M. Chang and C.M. Wei, Phys.Rev.B 67, 033309 (2003).
- R. Zhachuk, S. Teys, B. Olshanetsky, and S. Pereira, Appl.Phys. Lett. 95, 061901 (2009).
- T. Sato, S. I. Kitamura, and M. Iwatsuki, Surf. Sci. 445, 130 (2000).
- H. Uchida, T. Kuroda, F. B. Mohamad, J. Kim,K. Kashiwagi, K. Nishimura, and M. Inoue, Phys. Stat. Sol. 241, 1665 (2004).
- Vitali, M.G. Ramsey, and F.P. Netzer, Phys. Rev. Lett. 83, 316 (1999).
- O. Custance, I. Brihuega, J.M. G´omez-Rodr´iguez, and A.M. Bar´o, Surf. Sci. 482–485, 1406 (2001).
- O. Custance, S. Brochard, I. Brihuega, E. Artacho, J.M. Soler, A.M. Bar´o, and J.M. G´omez-Rodr´iguez, Phys.Rev.B 67, 235410 (2003).
- J. Mysliveˇcek, P. Sobot´ik, I. Oˇst’´adal, T. Jarol´imek, and P. ˇSmilauer, Phys.Rev.B 63, 045403 (2001).
- Polop, E. Vasco, J.A. Mart´in-Gago, and J. L. Saced ´on, Phys.Rev.B 66, 085324 (2002).
- А.Е. Долбак, Р.А.Жачук,ЖЭТФ 160, 55 (2021).
- S. Hwang, M. S. Ho, and T.T. Tsong, Phys.Rev. Lett. 83, 120 (1999).
- S. Hwang, M. S. Ho, and T.T. Tsong, Surf. Sci. 514, 309 (2002).
- S. Ho, I. S. Hwang, and T.T. Tsong, Surf. Sci. 564, 93 (2004).
Supplementary files
