SELF-CONSISTENT QUASI-CLASSICAL APPROACH TO DESCRIBING PARTICLE MOTION IN A DISSIPATIVE MEDIUM
- Authors: Sazonov S.V.1,2
-
Affiliations:
- National Research Center "Kurchatov Institute"
- Moscow Aviation Institute (National Research University)
- Issue: Vol 166, No 2 (2024)
- Pages: 153-161
- Section: Articles
- URL: https://journals.rcsi.science/0044-4510/article/view/261680
- DOI: https://doi.org/10.31857/S0044451024080017
- ID: 261680
Cite item
Abstract
An approximate self-consistent approach is proposed that allows describing the quasi-classical translational dynamics of a non-relativistic particle in a dissipative medium with arbitrary dependence of the corresponding dissipative forces on velocity. It is shown that dissipation suppresses the quantum properties of the particle. This leads to the necessity of interpreting propagation in a dissipative medium as a continuous process of measuring the particle state. As examples, non-stationary coherent states of the particle are considered at three stages of its deceleration in the medium due to ionization losses. These stages correspond to high-energy losses, losses in the vicinity of the Bragg peak, and low-energy losses at the final stage of propagation.
About the authors
S. V. Sazonov
National Research Center "Kurchatov Institute"; Moscow Aviation Institute (National Research University)
Author for correspondence.
Email: sazonov.sergey@gmail.com
Russian Federation, 123182, Moscow; 125993, Moscow
References
- А.Н. Рубцов, УФН 193, 783 (2023) [A.N. Rubtsov, Phys.Usp. 66, 734 (2003)].
- М. Б. Менский, УФН 173, 1199 (2003) [M. B. Menskii, Phys.Usp. 46, 1163 (2003)].
- Б. Б. Кадомцев, Динамика и информация, Редакция журнала .Успехи физических наук., Москва (1999).
- P. Caldirola, Nuovo Сimm. 18, 393 (1941).
- E. Kanai, Progr. Theor.Phys. 3, 440 (1948).
- V.V. Dodonov and V. I. Man’ko, Phys.Rev.A 20, 550 (1979).
- K.H. Yeon and C. I. Um, Phys.Rev.A 36, 5287 (1987).
- Б.А. Арбузов, ТМФ 106, 300 (1996) [B.A. Arbuzov, Theor.Math.Phys. 106, 249 (1996)].
- V.E. Tarasov, Phys. Lett.A 288, 173 (2001).
- V.E. Tarasov, Phys.Rev.E 66, 056116 (2002).
- V.G. Kupriyanov, S. L. Lyakhovich, and A.A. Sharapov, J.Phys.A 38, 8039 (2005).
- D.M. Gitman and V.G. Kupriyanov, J.Math. Sci. 141, 1399 (2007).
- А.М. Башаров, Опт. и спектр. 128, 186 (2020) [A.M. Basharov, Opt. Spectr. 128, 182 (2020)].
- А.М. Башаров, ЖЭТФ 158, 978 (2020) [A.M. Basharov, JETP 131, 853 (2020)].
- S. Madjber, S. Menouar, and J.R. Choi, Entropy 23, 837 (2021).
- V.E. Tarasov, Ann.Phys. 434, 056116 (2021).
- M.C. Parker and C. Jeynes, Entropy 25, 629 (2023).
- V. Gorini, A. Kossakowski, and E.C.G. Sudarshan, J.Math.Phys. 17, 821 (1976).
- G. Lindblad, Comm.Math. Phys. 48, 119 (1976).
- H.P. Breuer and F. Petruccione, Theory of Open Quantum Systems, Oxford Univ.Press, Oxford (2002).
- U. Weiss, Quantum Dissipative Systems, World Scientific, Singapore (2012).
- Isar, A. Sandulescu, H. Scutaru et al., Int. J.Mod. Phys.E 3, 635 (1994).
- H.P. Breuer, E.M. Laine, J. Piilo et al., Rev.Mod. Phys. 88, 021002 (2016).
- V.M. Filippov, V.M. Savchin, and S.G. Shorokhov, J.Math. Sci. 68, 275 (1994).
- S.T. Ali and M. Engliˇs, Rev.Math.Phys. 17, 391 (2005).
- С. В. Сазонов, Письма в ЖЭТФ 118, 297 (2023) [S.V. Sazonov, JETP Lett. 118, 302 (2023)].
- S.V. Sazonov, Laser Phys. Lett. 20, 095203 (2023).
- Г. Бете, Квантовая механика, Мир, Москва (1965) [H.A. Bethe, Intermediate Quantum Mechanics, W.A. Benjamin Inc., New York (1964)].
- В. В. Балашов, Строение вещества, Изд-во МГУ, Москва (1993).
- И.Ю. Толстихина, В.П.Шевелько, УФН 193, 1249 (2023) [I.Yu. Tolstikhina and V.P. Shevelko, Phys.Usp. 66, 1177 (2023)].
- Р. Ф. Фейнман, А.Р. Хиббс, Квантовая механика и интегралы по траекториям, Мир, Москва (1968) [R.P. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill Book Company, New York (1965)].
- Л.И.Шифф, Квантовая механика, Изд-во иностр. лит., Москва (1959) [L. I. Schiff, Quantum Mechanics, McGraw-Hill Book Company, New York (1968)].
- В. В. Балашов, В.К. Долинов, Курс квантовой механики, НИЦ .Регулярная и хаотическая динамика., Ижевск (2001).
- В. Г. Багров, Д.М. Гитман, А.С. Перейра, УФН 184, 961 (2014) [V.G. Bagrov, D.M. Gitman, and A. S. Pereira, Phys.Usp. 57, 891 (2014)].
- S.V. Sazonov, Laser Phys. Lett. 20, 015202 (2023).
- Ё.Х. Оцуки, Взаимодействие заряженных частиц с твердыми телами, Мир, Москва (1985) [Y.H. Ohtsuki, Charged Beam Interaction with Solids, Taylor & Francis Ltd., London (1983)].
- H. Bethe, Ann.Phys. 5, 325 (1930).
- F. Bloch, Ann.Phys. 16, 285 (1933).
- К.Н. Мухин, Экспериментальная ядерная физика, Т.1: Физика атомного ядра, Лань, Москва (2002).
- О.Б. Фирсов,ЖЭТФ 36, 1517 (1959) [O.B. Firsov, Sov.Phys. JETP 9, 1076 (1959)].
- J. S. Briggs and A.P. Pathak, J.Phys.C 6, L153 (1973).
- M. Kitagawa and Y.H. Ohtsuki, Phys.Rev.B 9, 4719 (1974).
Supplementary files
