SUPERCONDUCTIVITY AND INHOMOGENEOUS STATES IN METALLIC HYDROGEN AND ELECTRONIC SYSTEMS WITH ATTRACTION
- 作者: Kagan M.Y.1,2, Ikhsanov R.S.1,3, Kovalev I.A.1, Krasavin A.V.4, Mazur E.A.4
-
隶属关系:
- National Research University Higher School of Economics
- Kapitza Institute for Physical Problems of the Russian Academy of Sciences
- Lebedev Physical Institute of the Russian Academy of Sciences 119991
- National Research Nuclear University MEPhI
- 期: 卷 166, 编号 1 (2024)
- 页面: 89-97
- 栏目: Articles
- URL: https://journals.rcsi.science/0044-4510/article/view/261667
- DOI: https://doi.org/10.31857/S0044451024070095
- ID: 261667
如何引用文章
详细
Superconductivity and inhomogeneous states in metallic hydrogen and several electronic systems with attraction, described by inhomogeneous (spatially separated) Fermi–Bose mixture with superconducting clusters or order parameter droplets in a matrix of unpaired normal states, have been considered. The spatially separated Fermi–Bose mixture is realized in bismuth oxide superconductors BaKBiO3. Order parameter droplets can appear in thin films of "dirty" (with high impurity content) metal, described by a two-dimensional Hubbard model of low electron density with strong attraction and strong diagonal disorder. In metallic hydrogen and metal hydrides, droplets and large percolation clusters can form in shock wave experiments near the first-order phase transition boundary between liquid (non-crystalline) metallic and dielectric phases. For homogeneous superconductivity in metallic hydrogen and metal hydrides, within the framework of generalized Eliashberg equations, new results were obtained demonstrating negative sign of derivative dTc / dP < 0, for the pressure range from 60 to 100 hPa in triple hydride LaBH8. From the perspective of unusual physical properties, both in normal and possibly superfluid ("supersolid") states, important analogies between metallic hydrogen and quantum crystals have been highlighted.
Article for the special issue of JETP dedicated to the 130th anniversary of P. L. Kapitsa
作者简介
M. Kagan
National Research University Higher School of Economics; Kapitza Institute for Physical Problems of the Russian Academy of Sciences
Email: kagan@kapitza.ras.ru
俄罗斯联邦, 101000, Moscow; 119334, Moscow
R. Ikhsanov
National Research University Higher School of Economics; Lebedev Physical Institute of the Russian Academy of Sciences 119991
Email: kagan@kapitza.ras.ru
俄罗斯联邦, 101000, Moscow; 119991, Moscow
I. Kovalev
National Research University Higher School of Economics
Email: kagan@kapitza.ras.ru
俄罗斯联邦, 101000, Moscow
A. Krasavin
National Research Nuclear University MEPhI
Email: kagan@kapitza.ras.ru
俄罗斯联邦, 115409, Moscow
E. Mazur
National Research Nuclear University MEPhI
编辑信件的主要联系方式.
Email: kagan@kapitza.ras.ru
俄罗斯联邦, 115409, Moscow
参考
- A. Menushenkov, K. V. Klementev, A. V. Kuznetsov, and M. Yu. Kagan, ZHETP 120, 700 (2001).
- A. Menushenkov, A. V. Kuznetsov, K. V. Klementiev, and M. Yu. Kagan, J. Supercond. Nov. Magn. 29, 701 (2016).
- M. Yu. Kagan, K. I. Kugel, and A. L. Rakhmanov, Phys. Reports 916, 1 (2021)
- М. Ю. Каган, Е. А. Мазур, ЖЭТФ 159, 696 (2021).
- E. A. Mazur, R. Sh. Ikhsanov, and M. Yu. Kagan, J. Phys.: Conf. Series, 2036, 012019 (2021).
- М. Ю. Каган, С. В. Аксенов, А. В. Турлапов, Р. Ш. Ихсанов, К. И. Кугель, Е. А. Мазур и др., Письма в ЖЭТФ 117, 754 (2023).
- A. M. Goldman and N. Markovic, Phys. Today 51, 39 (1998).
- D. B. Haviland, Y. Liu, and A. M. Goldman, Phys. Rev. Lett. 62, 2180 (1989).
- Э.З. Кучинский, И.А.Некрасов, М.В.Садовский, УФН 53, 325 (2012).
- N. Grunhaupt et al., Nature Mater. 18, 1816 (2019).
- А. Н. Утюж, А. Михеенков, УФН 187, 953 (2017).
- И. А. Троян, Д. В. Семенок, А. Г. Иванова, А. Г. Квашнин, Д. Джоу, А. В. Садаков, О. А. Соболевский, В. М. Пудалов, И. Любутин, А. Р. Оганов, 192, 799 (2022).
- М. И. Еремец, А. П. Дроздов, УФН 186, 1257 (2016).
- D. Duan et al., Sci. Rep. 4, 6968 (2014).
- A. Drozdov et al., Nature 525, 73 (2015).
- Г. М. Элиашберг, ЖЭТФ 38, 966 (1960).
- М. В. Садовский, arxiv cond-mat. 2106.09948, 18 Jun (2021).
- E. Snider et al., Nature 586, 373 (2020).
- E. Wigner and H. B. Huntington, J. Chem. Phys. 3, 764 (1935)
- А. А. Абрикосов, Астрон. Ж. 31, 112 (1954).
- R. Dias, I. F. Silvera, Science 355, 715 (2017).
- P. Loubyere et al., Nature 577, 631 (2020).
- M. Houtput, J. Tempere, and I. F. Silvera, Phys. Rev. B 100, 134106 (2019).
- M. D. Knudson et al., Science 348, 1455 (2015).
- V. E. Fortov et al., Phys. Rev. Lett. 99, 185001 (2007).
- G. W. Collins et al., Science 281, 1178 (1998).
- M. Celliers et al., Phys. Rev. Lett. 84, 5564 (2000).
- S. D. Cataldo, Ch. Heil, W. von der Linden, and L. Boeri, Phys. Rev. B 104, L020511 (2021).
- M. Yu. Kagan and T. M. Rice, J. Phys.: Condens. Matter 6, 3771 (1994).
- H. Frohlich, J. Phys. C 1, 544, Letters to Editor (1968).
- J. Ruhman and P. A. Lee, Phys. Rev. B 96, 235107 (2017).
- J. Ruhman and P. A. Lee, arxiv cond-mat 1605.01737, 7 June (2016).
- D. Pines, P. Nozieres, The Theory of Quantum Liquids, Benjamin, New York (1966).
- М. Ю. Каган, M. M. Коровушкин, В. A. Мицкан, УФН 185, 785 (2015).
- М.Ю. Каган, А.В. Чубуков, Письма в ЖЭТФ 47, 525 (1988).
- W. Kohn and J. M. Luttinger, Phys. Rev. Lett. 15, 524 (1965).
- W. Kohn, Phys. Rev. Lett. 2, 393 (1959).
- H. Friedel, Adv. Phys. 3, 446 (1954).
- O. V. Dolgov, R. K. Kremer, J. Kortus et al., Phys. Rev. B 72, 024504 (2005).
- Z. Zhang, T. Cui, M.J. Hutcheon et al., Phys. Rev. Lett. 128, 047001 (2022).
- P. B. Allen and R. C. A. Dynes, Tech. Rev. 7, TCM4 (1974).
- P. B. Allen and R. C. A. Dynes Phys. Rev. B 12, 905 (1975).
- F. Marsiglio and J. Carbotte, Physica C: Superconductivity 1, 73 (2008).
- J. Carbotte, Rev. Mod. Phys. 62, 1027 (1990).
- R. Szczesniak, Acta Physica Polonica A 109, 179 (2006).
- A. Durajski, Sci. Reports 6, 38570 (2016).
- Н. A. Кудряшов, A. A. Кутуков, Е. А. Мазур, Письма в ЖЭТФ 104, 488 (2016).
- I. A. Kruglov, D. Semenok, H. Song et al., Phys. Rev. B 101, 024508 (2020).
- N. W. Ashcroft, Phys.Rev. Lett. 21, 1748 (1968).
- Е. Г. Бровман, Ю. М. Каган, А. Холас, ЖЭТФ 61, 2429 (1972).
- Е. Г. Бровман, Ю. М. Каган, А. Холас, В. В. Пушкарев, Письма в ЖЭТФ 18, 269 (1973).
- S. N. Burmistrov and L. B. Dubovskii, arxiv condmat 1611.02593, 8 November (2016).
- A. F. Andreev and I. M. Lifshitz, JETP 29,
- (1969).
- N. W. Ashcroft, J. Phys. A 36, 6137 (2003).
- М. Ю. Каган, Письма в ЖЭТФ 103, 822 (2016).
- M. Yu. Kagan and A. Bianconi, Condens. Matter 4, 51 (2019).
- W. E. Pickett, Phys. Rev. B 26, 1186 (1982).
- В. Н. Гребенев, Е. А. Мазур, Физика низких температур 13, 479 (1987).
- А. С. Александров, В. Ф. Елесин, М. П. Казеко, Физика твердого тела 21, 2062 (1979).
- Н. А. Кудряшов, А. А. Кутуков, Е. А. Мазур, Письма в ЖЭТФ 104, 488 (2016).
- P. Giannozzi, S. Baroni, N. Bonini et al., J.Phys.: Condens. Matter 21, 395502 (2009).
- D. R. Hamann, Phys. Rev. B 88, 085117 (2013).
- S. Ponce, E.R. Margine, C. Verdi, and F. Giustino, Comput. Phys. Comm. 209, 116 (2016).
- Р. Ш. Ихсанов, Е. А. Мазур, М. Ю. Каган, Известия Уфимского научного центра РАН № 1, 49 (2023).
- Z. Zhang, T. Cui, and M. J. Hutcheon et al., Phys. Rev. Lett. 128, 047001 (2022).
- В.С. Филинов, В.Е. Фортов, М. Бониц, П.Р. Левашоов, Письма в ЖЭТФ 74, 422 (2001).
- S. Kostenetskiy, R. A. Chulkevich, V. I. Kozyrev, J. Phys.: Conf. Ser. 1740, 012050 (2021).
补充文件
