PROGRESS, PROBLEMS AND PROSPECTS OF ROOM-TEMPERATURE SUPERCONDUCTIVITY

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The discovery of superconductivity at megabar (MB) pressures in hydrogen sulfide H3S, followed by metal polyhydrides, starting with binary ones, LaH10 etc., and ending with ternary ones, including (La,Y)H10, has revolutionized the field of condensed matter physics. These discoveries strengthen the hope for solving the century-old problem of creating materials with room-temperature superconductivity. In experiments performed at MB pressures over the past 5 years, besides the synthesis of hydrides, their physical properties were studied using optical, X-ray and Mössbauer spectroscopy methods, as well as galvanomagnetic measurements. We present the main results of galvanomagnetic measurements, including measurements in strong static (up to 21 T) and pulsed (up to 70 T) magnetic fields. Measurements of resistance drop to vanishingly small values at temperatures below the critical Tc value, decrease of critical temperature Tc with increasing magnetic field, as well as diamagnetic screening indicate the superconducting state of polyhydrides. The results of isotope effect measurements, together with the effect of magnetic impurities on Tc, indicate the electron-phonon mechanism of electron pairing. However, interelectron correlations in polyhydrides are by no means small in both superconducting and normal states. Possibly, this is the origin of unusual properties of polyhydrides that have not yet received a satisfactory temperature explanation, such as the linear temperature dependence of the second critical field Hc2(T), linear resistance dependence r(T), as well as linear magnetoresistance, very similar to that discovered by P. L. Kapitsa in 1929.
Article for the special issue of JETP dedicated to the 130th anniversary of P. L. Kapitsa

About the authors

I. A. Troyan

Shubnikov Institute of Crystallography, Kurchatov Complex of Crystallography and Photonics, National Research Center "Kurchatov Institute"

Email: pudalovvm@lebedev.ru
Russian Federation, Moscow 119333

D. V. Semenok

Center for High Pressure Science and Technology Advanced Research (HPSTAR)

Email: pudalovvm@lebedev.ru
China, Beijing 100094

A. V. Sadakov

Ginzburg Research Center for High-Temperature Superconductivity and Quantum Materials, Lebedev Physical Institute, Russian Academy of Sciences

Email: pudalovvm@lebedev.ru
Russian Federation, Moscow 119333

I .S. Lyubutin

Shubnikov Institute of Crystallography, Kurchatov Complex of Crystallography and Photonics, National Research Center "Kurchatov Institute"

Email: pudalovvm@lebedev.ru
Russian Federation, Moscow 119333

V. M. Pudalov

Ginzburg Research Center for High-Temperature Superconductivity and Quantum Materials, Lebedev Physical Institute, Russian Academy of Sciences; National Research University Higher School of Economics

Author for correspondence.
Email: pudalovvm@lebedev.ru
Russian Federation, Moscow 119333; Moscow 101000

References

  1. E. Wigner and H. B. Huntington, J. Chem. Phys. 3, 764 (1935).
  2. N. W. Ashcroft, Phys. Rev. Lett. 21, 1748 (1968).
  3. T. W. Barbee et al., Nature 340, 369 (1989).
  4. N. W. Ashcroft, Phys. Rev. Lett. 92, 187002 (2004).
  5. J. Feng, W. Grochala, T. Jaron, R. Hoffmann, A. Bergara, and N. W. Ashcroft, Phys. Rev. Lett. 96, 017006 (2006).
  6. M. I. Eremets, I. A. Trojan, S. A. Medvedev, J. S. Tse, and Y. Yao, Science 319, 1506 (2008). https://doi.org/10.1126/science.1153282
  7. A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, Nature 525, 73 (2015).
  8. М. И. Еремец, А. П. Дроздов, УФН 186, 1257 (2016).
  9. D. V. Semenok, I. A. Troyan, A. G. Ivanova, A. G. Kvashnin, I. A. Kruglov, M. Hanfland, A. V. Sadakov, O. A. Sobolevskiy, K. S. Pervakov, I. S. Lyubutin, K. V. Glazyrin, N. Giordano, D. N. Karimov, A. L. Vasiliev, R. Akashi, V, M. Pudalov, and A. R. Oganov, Materials Today 48, 18 (2021), https://doi.org/10.1016/j.mattod.2021.03.025.
  10. И. А. Троян, Д. В. Семенок, А. Г. Иванова, А. Г. Квашнин, Д. Джоу, А. В. Садаков, О. А. Соболевский, В. М. Пудалов, И. С. Любутин, А. Р. Оганов, УФН 192, 799 (2022).
  11. A. P. Drozdov et al., Nature 569, 528 (2019).
  12. I. A. Troyan, D. V. Semenok, A. G. Kvashnin, A. V. Sadakov, O. A. Sobolevskiy, V. M. Pudalov, A. G. Ivanova, V. B. Prakapenka, E. Greenberg, A. G. Gavriliuk, I. S. Lyubutin, V. V. Struzhkin, A. Bergara, I. Errea, R. Bianco, M. Calandra, F. Mauri, L. Monacelli, R. Akashi, and A. R. Oganov, Adv. Mater. 33, 2006832 (2021).
  13. P. Kong, V. S. Minkov, M. A. Kuzovnikov, A. P. Drozdov, S. P. Besedin, S. Mozaffari, L. Balicas, F. F. Balakirev, V. B. Prakapenka, S. Chariton, D. A. Knyazev, E. Greenberg, and M. I. Eremets, Nat. Commun. 12, 5075 (2021).
  14. W. Chen, D. V. Semenok, X. Huang, H. Shu, X. Li, D. Duan, T. Cui, and A. R. Oganov, Phys. Rev. Lett. 127, 117001 (2021).
  15. P. W. Anderson, J. Phys. Chem. Solids 11, 26 (1959).
  16. А. А. Абрикосов, Основы теории металлов, Наука, Москва (1987).
  17. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).
  18. А. А. Абрикосов, Л. П. Горьков, ЖЭТФ 39, 178 (1960).
  19. D. V. Semenok, I. A. Troyan, A. V. Sadakov, D. Zhou, M. Galasso, A. G. Kvashnin, A. G. Ivanova, I. A. Kruglov, A. A. Bykov, K. Y. Terent’ev, A. V. Cherepakhin, O. A. Sobolevskiy, K. S. Pervakov, A. Y. Seregin, T. Helm, T. Forster, A. D. Grockowiak, S. W. Tozer, Y. Nakamoto, K. Shimizu, V. M. Pudalov, I. S. Lyubutin, and A. R.Oganov, Adv. Mater. 34, 2204038 (2022).
  20. S. R. W. Legvold, B. J. Green, Beaudry, and J. E. Ostenson, Solid State Commun. 18, 725 (1976).
  21. K. Zhang, W. Chen, Y. Zhang et al., Sci. China Phys. Mech. Astron. 67, 238211 (2024), https://doi.org/10.1007/s11433-023-2285-3.
  22. J. Bi, Y. Nakamoto, P. Zhang et al., Nat. Commun. 13, 5952 (2022), https://doi.org/10.1038/s41467-022-33743-6.
  23. W. Chen, X. Huang, D. V. Semenok et al., Nat. Commun. 14, 2660 (2023), https://doi.org/10.1038/s41467-023-38254-6).
  24. E. Snider, N. Dasenbrock-Gammon, R. McBride, M. Debessai, H. Vindana, K. Vencatasamy, K. V. Lawler, A. Salamat, and R. P. Dias, Nature 586, 373 (2020).
  25. A. F. Goncharov, E. Bykova, M. Bykov, X. Zhang, Y. Wang, S. Chariton, V. B. Prakapenka, and J. S. Smith, J. Appl. Phys. 131, 025902 (2022).
  26. А. В. Садаков, О. А. Соболевский, В. М. Пудалов, УФН 192, 1409 (2022).
  27. D. van der Marel and J. E. Hirsch, Int. J. Mod. Phys. 37, 2375001 (2023).
  28. N. Dasenbrock-Gammon, E. Snider, R. McBride, H. Pasan, D. Durkee, N. Khalvashi-Sutter, S. Munasinghe, S. E. Dissanayake, K. V. Lawler, A. Salamat, and R. P. Dias, Nature 615, 244 (2023); https://doi.org/10.1038/s41586-023-05742-0.
  29. Retraction note: https://doi.org/10.1038/s41586-023-06774-2
  30. N. S. Pavlov, I. R. Shein, K. S. Pervakov, V. M. Pudalov, and I. A. Nekrasov, Письма в ЖЭТФ 118, 707 (2023).
  31. V. Minkov, S. L. Bud’ko, F. F. Balakirev, V. B. Prakapenka, S. Chariton, R. J. Husband, H. P. Liermann, and M. I. Eremets, Nature Commun. 13, 3194 (2022); https://doi.org/10.1038/s41467-022-30782-x.
  32. V. Struzhkin, B. Li, C. Ji, X.-J. Chen, V. Prakapenka, E. Greenberg, I. Troyan, A. Gavriliuk, and H.-k. Mao, Matter Radiat. Extremes 5, 028201 (2020).
  33. X. Huang et al., Natl. Sci. Rev. 6, 713 (2019).
  34. D. Semenok and A. R. Oganov, Nat. Sci. Rev. 6, 856 (2019).
  35. V. Struzhkin, Science 351, 1260 (2016).
  36. I. A. Troyan, A. Gavroliuk, R. R¨uffer, A. Chumakov, A. Mironovich, I. Lyubutin, D, Perekalin, A. P. Drozdov, and M. I. Eremets, Science 351, 1303 (2016).
  37. J. E. Hirsch and F. Marsiglio, J. Phys. C 587, 1353896 (2021).
  38. Y. Tomioka, M. Naito, and K. Kitazawa, Phys. C: Supercond. 215, 297 (1993).
  39. D. M. Gokhfeld et al., J. Appl. Phys. 109, 033904 (2011).
  40. Д. М. Гохфельд, Письма в ЖТФ 45, 3 (2019).
  41. I. S. Lyubutin, in Physical Crystallography, ser. Problems of the Modern Crystallography, Nauka Pub., Moscow (1992), p.326.
  42. I. S. Lyubutin and T. V. Dmitrieva, JETP Lett. 21, 59 (1975).
  43. R. Bjork and C. R. H. Bahl, Appl. Phys. Lett. 103, 102403 (2013)
  44. R. Prozorov et al., Phys. Rev. Appl. 10, 014030 (2018).
  45. В. Л. Гинзбург, Л. Д. Ландау, ЖЭТФ 20, 1064 (1950).
  46. I. A. Troyan, D. V. Semenok, A. G. Ivanova, A. V. Sadakov, Di Zhou, A. G. Kvashnin, I. A. Kruglov, O. A. Sobolevskiy, M. V. Lyubutina, D. S. Perekalin, T. Helm, S. W. Tozer,M. Bykov, A. F. Goncharov, V. M. Pudalov, and I. S. Lyubutin, Advanced Science 10, 2303622 (2023).
  47. N. R. Werthamer, E. Helfand, and P. C. Hohenberg, Phys. Rev. 147, 295 (1966).
  48. F. Hunte, J. Jaroszynski, A. Gurevich, D. C. Larbalestier, R. Jin, A. S. Sefat, M. A. McGuire, B. C. Sales, D. K. Christen, and D. Mandrus, Nature 453, 903 (2008); https://doi.org/10.1038/nature07058.
  49. H. Q. Yuan, J. Singleton, F. F. Balakirev, S. A. Baily, G. F. Chen, J. L. Luo, and N. L. Wang, Nature 457, 565 (2009), https://doi.org/10.1038/nature07676.
  50. S. Khim, B. Lee, J. W. Kim, E. S. Choi, G. R. Stewart, and K. H. Kim, Phys. Rev. B 84, 104502 (2011).
  51. G. A. Ummarino and A. Bianconi, Cond. Matter 8, 69 (2023); https://doi.org/10.3390/condmat8030069.
  52. C. Wang, S. Yi, and J.-H. Cho, Phys. Rev. B 101, 104506 (2020).
  53. K. Kuroki, T. Higashida, and R. Arita, Phys. Rev. B 72, 212509 (2005).
  54. D. Semenok, Computational design of new superconducting materials and their targeted experimental synthesis, Doctoral Program in Materials Science and Engineering Thesis, Skoltech, Moscow (2022).
  55. H. Jeon, C. Wang, S. Liu, J. M. Bok, Y. Bang, and J.-H. Cho, New J. Phys. 24, 083048 (2022).
  56. B. Spivak and F. Zhou, Phys. Rev. Lett. 74, 2800 (1995).
  57. V. M. Galitski and A. I. Larkin, Phys. Rev. Lett. 87, 087001 (2001).
  58. B. Sacepe, J. Seidemann, F. Gay, K. Davenport, A. Rogachev, M. Ovadia, K. Michaeli, and M.V. Feigel’man, Nature Phys. 15, 48 (2019); https://doi.org/10.1038/s41567-018-0294-6.
  59. A. V. Sadakov, V. A. Vlasenko, D. V. Semenok, Di Zhou, I. A. Troyan, A. S. Usoltsev, and V. M. Pudalov, ArXiv:2311.01318.
  60. E. F. Talantsev, Supercond. Sci. and Technol. 35, 095008 (2022); https://doi.org/10.1088/1361-6668/ac7d78.
  61. D. Sun, V. S. Minkov, S. Mozaffari, Y. Sun, Y. Ma, S. Chariton, V. B. Prakapenka, M. I. Eremets, L. Balicas, and F. F. Balakirev, Nat. Commun. 12, 6863 (2021).
  62. D. Semenok, J. Guo, Di Zhou, W. Chen, T. Helm, A. Kvashnin, A. Sadakov, O. Sobolevsky, V. Pudalov, C. Xi, X. Huang, and I. Troyan, ArXiv:2307.11742.
  63. F. Bloch, Z. Physik 59, 208 (1930).
  64. D. Semenok et al., to be published.
  65. C. Castellani, C. DiCastro, H. Fukuyama, P. A. Lee, and M. Ma, Phys. Rev. B 33, 7277 (1986).
  66. G. Zala, B. N. Narozhny, and I. L. Aleiner, Phys. Rev. B 64, 214204 (2001).
  67. Yanan Zhang, Dajun Su, Yanen Huang, Zhaoyang Shan, Hualei Sun, Mengwu Huo, Kaixin Ye, Jiawen Zhang, Zihan Yang, Yongkang Xu, Yi Su, Rui Li, Michael Smidman, Meng Wang, Lin Jiao, and Huiqiu Yuan, ArXiv:2307.14819v1
  68. R. A. Cooper, Y. Wang, B. Vignolle at al., Science 323, 603 (2009).
  69. P. Kapitza and E. Rutherford, Proc. R. Soc. London, Ser. A 123, 292 (1929); П.Л. Капица, Сильные магнитные поля, Наука, Москва (1988).
  70. Ю. А. Дрейзин, А. М. Дыхне, ЖЭТФ 63, 242 (1972).
  71. C. Heil, S. Di Cataldo, G. B. Bachelet, and L. Boeri, Phys. Rev. 99, 220502(R) (2019).
  72. Liu, C. Wang, S. Yi, K. W. Kim, J. Kim, and J.-H. Cho, Phys. Rev. B 99, 140501 (2019).
  73. K. Wang and C. Petrovic, Appl. Phys. Lett. 101, 152102 (2012); https://doi.org/10.1063/1.4758298.
  74. H. Fang, M. Lyu, Hao Su, J. Yuan, Y. Li et al. Preprint https://doi.org/ 10.48550/arXiv.2301.05918
  75. Y. He, J. Gayles, M. Yao, T. Helm, T. Reimann, V. N. Strocov, W. Schnelle, M. Nicklas, Y. Sun, G. H. Fecher, and C. Felser, Nat. Commun. 12, 4576 (2021).
  76. J. Richard, P. Monceau, and M. Renard, Phys. Rev. B 35, 4533 (1987).
  77. M. Naito1, and S. Tanaka, J. Phys. Soc. Jpn. 51, 228 (1982).
  78. A. A. Sinchenko, P. D. Grigoriev, P. Lejay, and P. Monceau, Phys. Rev. B 96, 245129 (2017).
  79. A. A. Abrikosov, Phys. Rev. B 58, 2788 (1998).
  80. A. A. Abrikosov, Phys. Rev. B 60, 4231 (1999).
  81. Jianning Guo, Dmitrii Semenok, Grigoriy Shutov, Di Zhou, Su Chen, Yulong Wang, Kexin Zhang, Xinyue Wu, Sven Luther, Toni Helm, Xiaoli Huang, and Tian Cui, Natl. Sci. Rev. nwae149 (2024); https://doi.org/10.1093/nsr/nwae149.
  82. D. Semenok, J. Guo, Di Zhou, W. Chen, T. Helm, A. Kvashnin, A. Sadakov, O. Sobolevsky, V. Pudalov, C. Xi, X. Huang, and I. Troyan https://arxiv.org/pdf/2307.11742.
  83. A. Legros, S. Benhabib, W. Tabis et al., Nat. Phys. 15, 142 (2019).
  84. A. Ataei, A. Gourgout, G. Grissonnanche et al., Nat. Phys. 18, 1420 (2022).
  85. R. L. Greene, P. R. Mandal, N. R. Poniatowski et al., Ann. Rev. Cond. Matter Phys. 11, 213 (2020).
  86. P. Allen and R. Dynes, Phys. Rev. B 12, 905 (1975); https://doi.org/10.1103/PhysRevB.12.905.
  87. С. Тябликов, В. Толмачев, ЖЭТФ 34, 1254 (1958).
  88. V. Z. Kresin, A. G. Ovchinnikov, and S. A. Wolf, Superconducting State, Oxford Univ. Press (2021).
  89. M. V. Sadovskii, J. Supercond. Novel Magnetism, 33, 19 (2020).
  90. A. S. Alexandrov and A. B. Krebs, Usp. Fiz. Nauk 162, 1 (1992) [Physics Uspekhi 35, 345 (1992)].
  91. E. F. Talantsev and K. Stolze, Superconductor Science and Technology 34, 064001 (2021).
  92. I. Errea, M. Calandra, C. J. Pickard, J. R. Nelson, R. J. Needs, Y. Li, H. Liu, Y. Zhang, Y. Ma, and F. Mauri, Nature 532, 81 (2016).
  93. I. Errea, F. Belli, L. Monacelli et al., Nature 578, 66 (2020); https://doi.org/10.1038/s41586-020-1955-z.
  94. F. Peng, Y. Sun, C. J. Pickard, R. J. Needs, Q. Wu, and Y. Ma, Phys. Rev. Lett. 119, 107001 (2017)
  95. E. F. Talantsev, Superconductor Science and Technology 33, 094009 (2020).
  96. P. Song, Z. Hou, P.Bd. Castro, K. Nakano, K. Hongo, Y. Takano, and R. Maezono, Chem. Mater. 33, 9501 (2021).
  97. C. J. Pickard, I. Errea, and M. I. Eremets, Annu. Rev. Cond. Matter Phys. 11, 57 (2020).
  98. W. E. Pickett, Rev. Mod. Phys. 95, 021001 (2023), arXiv:2204.05930v4.
  99. I. Esterlis, B. Nosarzewski, E. W. Huang, D. Moritz, , T. P. Devereux, D. J. Scalapino, and S. A. Kivelson, Phys. Rev. B 97, 140501(R) (2018).
  100. . E. A. Yuzbashyan and B. L. Altshuler, Phys. Rev. B 106, 054518 (2022).
  101. . K. Trachenko, B. Monserrat, C. J. Pickard, and V. V. Brazhkin, Sci. Adv. 6, eabc8662 (2020).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».