INTERFERENCE OF A CHAIN OF BOSE CONDENSATES IN THE PITAEVSKII–GROSS APPROXIMATION
- Authors: Mosaki I.N.1,2, Turlapov A.V.2,3,4
-
Affiliations:
- Department of Physics, Lomonosov Moscow State University
- International Center for Quantum Optics and Quantum Technologies LLC
- Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences
- Moscow Institute of Physics and Technology
- Issue: Vol 166, No 1 (2024)
- Pages: 30-37
- Section: Articles
- URL: https://journals.rcsi.science/0044-4510/article/view/261662
- DOI: https://doi.org/10.31857/S0044451024070046
- ID: 261662
Cite item
Abstract
A long chain of Bose condensates freely expands and interferes after being released from an optical lattice. The interference fringes are well resolved both in the case of equal phases of the condensatesand in the case of fluctuating phases. In the second case the positions of the fringes also fluctuate. The spectrum of the spatial density distribution, however, is reproducible despite the fluctuations. Moreover two types of peaks are distinguishable in the spectrum. The first type arises due to the phase fluctuations, the second type is associated with the coherence between the condensates. In the framework of the Pitaevskii–Gross equation we calculate the interference of the condensates and compare the calculation with experiment [Phys. Rev. Lett. 122, 090403 (2019)]. The calculation reproduces the positions of the spectrum peaks, including the dependence on the interparticle interaction. The calculated heights
of the peaks, however, in some cases differ with the experimental ones.
About the authors
I. N. Mosaki
Department of Physics, Lomonosov Moscow State University; International Center for Quantum Optics and Quantum Technologies LLC
Email: turlapov@appl.sci-nnov.ru
Russian Federation, 119991, Moscow; 121205, Moscow
A. V. Turlapov
International Center for Quantum Optics and Quantum Technologies LLC; Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences; Moscow Institute of Physics and Technology
Author for correspondence.
Email: turlapov@appl.sci-nnov.ru
Russian Federation, 121205, Moscow; 603950, Nizhny Novgorod; 141701, Dolgoprudny, Moscow region
References
- P. L. Kapitza and P. A. M. Dirac, The Reflection of Electrons from Standing Light Waves, Mathematical Proceedings of the Cambridge Philosophical Society 29, 297 (1933).
- JETP Lett. 31, 509 (1980).
- P. L. Gould, G. A. Ruff, and D. E. Pritchard, Diffraction of Atoms by Light: The Near-Resonant Kapitza–Dirac Effect, Phys. Rev. Lett. 56, 827 (1986).
- H. F. Talbot, Facts Related to Optical Science, Philos. Mag. 6, 401 (1836).
- N. Saiga and Y. Ichioka, Visualization of the Strain Wave Front of a Progressive Acoustic Wave Based on the Talbot Effect, Appl. Opt. 24, 1459 (1985).
- JETP Lett. 106, 23 (2017).
- W. Zhang, C. Zhao, J. Wang, and J. Zhang, An Experimental Study of the Plasmonic Talbot Effect, Opt. Express 17, 19757 (2009).
- S. Mansfeld, J. Topp, K. Martens, J. N. Toedt, W. Hansen, D. Heitmann, and S. Mendach, Spin Wave Diffraction and Perfect Imaging of a Grating, Phys. Rev. Lett. 108, 047204 (2012).
- T. Gao, E. Estrecho, G. Li, O. A. Egorov, X. Ma, K. Winkler, M. Kamp, C. Schneider, S. H¨ofling, A. G. Truscott, and E. A. Ostrovskaya, Talbot Effect for Exciton Polaritons, Phys. Rev. Lett. 117, 097403 (2016).
- V. L. Bratman, G. G. Denisov, N. S. Ginzburg, B. D. Kol’chugin, N. Y. Peskov, S. V. Samsonov, and A. B. Volkov, Experimental Study of an FEM with a Microwave System of a New Type, IEEE Trans. Plasma Sci. 24, 744 (1996).
- T. G. A. Verhoeven, W. A. Bongers, V. L. Bratman, M. Caplan, G. G. Denisov, C. A. J. van der Geer, P. Manintveld, A. J. Poelman, J. Plomp, A. V. Savilov, P. H. M. Smeets, A. B. Sterk, and W. H. Urbanus, First mm-Wave Generation in the FOM Free Electron Maser, IEEE Trans. Plasma Sci. 27, 1084 (1999).
- M. S. Chapman, C. R. Ekstrom, T. D. Hammond, J. Schmiedmayer, B. E. Tannian, S. Wehinger, and D. E. Pritchard, Near-field Imaging of Atom Diffraction Gratings: The Atomic Talbot Effect, Phys. Rev. A 51, R14 (1995).
- L. Deng, E. W. Hagley, J. Denschlag, J. E. Simsarian, M. Edwards, C. W. Clark, K. Helmerson, S. L. Rolston, and W. D. Phillips, Temporal, Matter-Wave-Dispersion Talbot Effect, Phys. Rev. Lett. 83, 5407 (1999).
- B. Santra, C. Baals, R. Labouvie, A. B. Bhattacherjee, A. Pelster, and H. Ott, Measuring Finite-Range Phase Coherence in an Optical Lattice Using Talbot Interferometry, Nature Comm. 8 15601 (2017).
- F. Wei, Z. Zhang, Y. Chen, H. Shui, Y. Liang, C. Li, and X. Zhou, Temporal Talbot Interferometer of Strongly Interacting Molecular Bose–Einstein Condensate, arXiv:2402.14629 (2024).
- M. J. Mark, E. Haller, J. G. Danzl, K. Lauber, M. Gustavsson, and H.-C. N¨agerl, Demonstration of the Temporal Matter-Wave Talbot Effect for Trapped Matter Waves, New J. of Phys. 13, 085008 (2011).
- V. Makhalov and A. Turlapov, Order in the Interference of a Long Chain of Bose Condensates with Unrestricted Phases, Phys. Rev. Lett. 122, 090403 (2019).
- Z. Hadzibabic, S. Stock, B. Battelier, V. Bretin, and J. Dalibard, Interference of an Array of Independent Bose–Einstein Condensates, Phys. Rev. Lett. 93, 180403 (2004).
- JETP Lett. 109, 552 (2019).
- JETP 13, 451 (1961).
- E. P. Gross, Structure of a Quantized Vortex in Boson Systems, Nuovo Cimento 20, 454 (1961).
- L. Pitaevskii and S. Stringari, Thermal vs Quantum Decoherence in Double Well Trapped Bose-Einstein Condensates, Phys. Rev. Lett. 87, 180402 (2001).
- R. Gati, B. Hemmerling, J. Folling, M. Albiez, and M. K. Oberthaler, Noise Thermometry with Two Weakly Coupled Bose-Einstein Condensates, Phys. Rev. Lett. 96, 130404 (2006).
Supplementary files
