MODEL OF SOLITON TURBULENCE OF HIGH-FREQUENCY FLUCTUATIONS IN PARTIALLY MAGNETIZED PLASMA
- Authors: Kovaleva I.K.1, Kovalev A.T.1
-
Affiliations:
- Sadovsky Institute of Geosphere Dynamics of the Russian Academy of Sciences
- Issue: Vol 165, No 6 (2024)
- Pages: 870-875
- Section: Articles
- URL: https://journals.rcsi.science/0044-4510/article/view/259048
- DOI: https://doi.org/10.31857/S0044451024060142
- ID: 259048
Cite item
Abstract
A theoretical consideration of high-frequency microfluctuations formed by electron current across the magnetic field has been conducted. The Ginzburg–Landau equation with a nonlocal term was obtained to describe the dynamics of electron-cyclotron drift fluctuations. The thresholds for transition to turbulent regime and the boundaries within which soliton turbulence regime can be realized were determined, depending on the parameters of this equation.
About the authors
I. Kh. Kovaleva
Sadovsky Institute of Geosphere Dynamics of the Russian Academy of Sciences
Email: akoval@idg.chph.ras.ru
Russian Federation, 119334, Moscow
A. T. Kovalev
Sadovsky Institute of Geosphere Dynamics of the Russian Academy of Sciences
Author for correspondence.
Email: akoval@idg.chph.ras.ru
Russian Federation, 119334, Moscow
References
- N. Brenning, Space Sci.Rev. 59, 209 (1992).
- C.M. Swenson, M.C. Kelley, F. Primdahl et al., Geophys.Res. Lett. 17, 2337 (1990).
- O. Bolin, N. Brenning, C.M. Swenson et al., J.Geophys.Res.A 101, 19729 (1996).
- N. Brenning, R. L. Merlino, D. Lundin et al., Phys.Rev. Lett. 103, 225003 (2009).
- N. Brenning and D. Lundin, Phys.Plasmas 19, 093505 (2012).
- O. Koshkarov, A. Smolyakov, Y. Raitses et al., Phys.Rev. Lett. 122, 185001 (2019).
- K. Hara and S. Tsikata, Phys.Rev.E 102, 023202 (2020).
- А. Смоляков, Т. Зинтель, Л. Кедель и др., Физика плазмы 46, 408 (2020).
- S. Janhunen, A. Smolyakov, O. Chapurin et al., Phys.Plasmas 25, 011608 (2018).
- A. Ducrocq, J.C. Adam, A. Heron et al., Phys. Plasmas 13, 102111 (2006).
- S. I. Popel, S.V. Vladimirov, and V.N. Tsytovich, Phys.Rep. 259, 327 (1995).
- T. Kakutani and N. Sugimoto, Phys. Fluids 17, 1617 (1974).
- А. Найфэ, Введение в методы возмущений, Мир, Москва (1984).
- L. Wang, A. Hakim, B. Srinivasan et al., arXiv: 2107. 09874v2 [physics.plasm-ph] (2022).
- A. Smolyakov, O. Chapurin, W. Frias et al., Plasma Phys.Control. Fusion 59, 014041 (2017).
- I. S. Aranson and L. Kramer, Rev.Mod.Phys. 74, 99 (2002).
- В. Е. Захаров, А.Н. Пушкарев, В. Ф. Швец и др., Письма в ЖЭТФ 48, 79 (1988).
- А.И. Дьяченко, В. Е. Захаров, А.Н. Пушкарев и др., ЖЭТФ 96, 2026 (1989).
- M. Golles, S. Darmanyan, F. Lederer et al., Opt. Lett. 25, 293 (2000).
- A. Picozzi and J. Garnier, Phys.Rev. Lett. 107, 233901 (2011).
- S. Wabnitz, Opt. Lett. 20, 1979 (1995).
- V. S. Grigoryan and T. S. Muradyan, J. Opt. Soc. Amer. B 8, 1757 (1991).
- S.K. Turitsyn, Phys.Rev.E 54, R3125 (1996).
- Б.С. Кернер, В.В. Осипов, УФН 154, 201 (1989).
- Б.С. Кернер, В.В. Осипов, УФН 160, 2 (1990).
- J.M. Soto-Crespo, N. Akhmediev, and K. S. Chiang, Phys. Lett.A 291, 115 (2001).
- N. Akhmediev and J.M. Soto-Crespo, Phys. Lett.A 317, 287 (2003).
- Н. Ахмедиев, А. Анкевич, Диссипативные солитоны, Физматлит, Москва (2008).
- S.K. Lele, J.Comput.Phys. 103, 16 (1992).
Supplementary files
