CAPTURE OF ELECTRONS AND HOLES ON MERCURY VACANCIES VIA SINGLE OPTICAL PHONON EMISSION DURING SHOCKLEY– READ–HALL RECOMBINATION IN A NARROW GAP HGCDTE
- Авторлар: Kozlov D.V.1,2, Rumyantsev V.V.1,2, Yantser A.A.1,2, Morozov S.V.1,2, Gavrilenko V.I.1,2
-
Мекемелер:
- Institute for Physics of Microstructures, Russian Academy of Sciences
- Lobachevsky Nizhny Novgorod State University
- Шығарылым: Том 165, № 6 (2024)
- Беттер: 840-847
- Бөлім: Articles
- URL: https://journals.rcsi.science/0044-4510/article/view/259045
- DOI: https://doi.org/10.31857/S0044451024060117
- ID: 259045
Дәйексөз келтіру
Аннотация
The aim of the present work is to calculate the recombination time of Shockley–Read–Hall (SRH) process with the capture of charge carriers on mercury vacancy states in HgCdTe ternary alloys with a bandgap of about 40 meV. In the considered case the capture of both electron and hole is possible due to the emission of a single optical phonon. It is found that at T = 4.2 K and T = 77 K the SRH recombination determines the total lifetime of carriers in the p-type material with recombination centers density more than ~2∙1015 cm–3, which makes it possible to control the lifetime of carriers by changing the concentration of mercury vacancies.
Негізгі сөздер
Авторлар туралы
D. Kozlov
Institute for Physics of Microstructures, Russian Academy of Sciences; Lobachevsky Nizhny Novgorod State University
Email: yantser@ipmras.ru
Ресей, 603087, Nizhniy Novgorod; 603950, Nizhny Novgorod
V. Rumyantsev
Institute for Physics of Microstructures, Russian Academy of Sciences; Lobachevsky Nizhny Novgorod State University
Email: yantser@ipmras.ru
Ресей, 603087, Nizhniy Novgorod; 603950, Nizhny Novgorod
A. Yantser
Institute for Physics of Microstructures, Russian Academy of Sciences; Lobachevsky Nizhny Novgorod State University
Email: yantser@ipmras.ru
Ресей, 603087, Nizhniy Novgorod; 603950, Nizhny Novgorod
S. Morozov
Institute for Physics of Microstructures, Russian Academy of Sciences; Lobachevsky Nizhny Novgorod State University
Email: yantser@ipmras.ru
Ресей, 603087, Nizhniy Novgorod; 603950, Nizhny Novgorod
V. Gavrilenko
Institute for Physics of Microstructures, Russian Academy of Sciences; Lobachevsky Nizhny Novgorod State University
Хат алмасуға жауапты Автор.
Email: yantser@ipmras.ru
Ресей, 603087, Nizhniy Novgorod; 603950, Nizhny Novgorod
Әдебиет тізімі
- M. Brzezinska, Y. Guan, O. V. Yazyev, S. Sachdev, and A. Kruchkov, Engineering Syk Interactions in Disordered Graphene Flakes Under Realistic Experimental Conditions, Phys. Rev. Lett. 131, 036503 (2023), doi: 10.1103/PhysRevLett.131.036503.
- Y.-Z. Chou and S. Das Sarma, Kondo Lattice Model in Magic-Angle Twisted Bilayer Graphene, Phys. Rev. Lett. 131, 026501 (2023), doi: 10.1103/PhysRevLett.131.026501.
- S. Jois, J. L. Lado, G. Gu, Q. Li, and J. U. Lee, Andreev Reflection and Klein Tunneling in High-Temperature Superconductorgraphene Junctions, Phys. Rev. Lett. 130, 156201 (2023), doi: 10.1103/PhysRevLett.130.156201.
- C. Lu, Y. Gao, X. Cao, Y. Ren, Z. Han, Y. Cai, and Z.Wen, Linear and Nonlinear Edge and Corner States in Graphenelike Moire Lattices, Phys. Rev. B 108, 014310 (2023), doi: 10.1103/PhysRevB.108.014310.
- G. Yu, Y. Wang, M. I. Katsnelson, and S. Yuan, Origin of the Magic Angle in Twisted Bilayer Graphene From Hybridization of Valence and Conduction Bands, Phys. Rev. B 108, 045138 (2023), doi: 10.1103/PhysRevB.108.045138.
- M. Najarsadeghi, A. Ahmadi Fouladi, A. Z. Rostami, and A. Pahlavan, Tunnel Magnetoresistance of Trilayer Graphene-Based Spin Valve, Phys. E 144, 115422 (2022), doi: 10.1016/j.physe.2022.115422.
- A. A. Fouladi, Spin-Dependent Transport Properties of Aa-Stacked Bilayer Graphene Nanoribbon, Phys. E 102, 117 (2018), doi: 10.1016/j.physe.2018.05.002.
- A. A. Fouladi, Effect of Uniaxial Strain on the Tunnel Magnetoresistance of T-Shaped Graphene Nanoribbon Based Spinvalve, Superlattices and Microstructures 95, 108 (2016), doi: 10.1016/j.spmi.2016.04.043.
- A. A. Fouladi and S. Ketabi, Electronic Properties of Z-Shaped Graphene Nanoribbon Under Uniaxial Strain, Phys. E 74, 475 (2015), doi: 10.1016/j.physe.2015.08.018.
- G. Le Lay, Silicene Transistors, Nature Nanotech. 10, 202 (2015), doi: 10.1038/nnano.2015.10.
- H. Emami-Nejad, A. mir, Z. Lorestaniweiss, A. Farmani, and R. Talebzadeh, First Designing of a Silicene-Based Optical Mosfet With Outstanding Performance, Sci. Rep. 13, 6563 (2023), doi: 10.1038/s41598-023-33620-2.
- A. A. Fouladi, Electronic Transport Properties of TShaped Silicene Nanoribbons, Phys. E 91, 101 (2017), doi: 10.1016/j.physe.2016.10.040.
- A. A. Fouladi, Quantum Transport Through a ZShaped Silicene Nanoribbon, Chinese Phys. B 26, 047304 (2017), doi: 10.1088/1674-1056/26/4/047304.
- B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet, and B. Aufray, Epitaxial Growth of a Silicene Sheet, Appl. Phys. Lett. 97, 223109 (2010), doi: 10.1063/1.3524215.
- C. Grazianetti, E. Cinquanta, and A. Molle, Two-Dimensional Silicon: The Advent of Silicene, 2D Materials 3, 012001 (2016), doi: 10.1088/2053-1583/3/1/012001.
- P. Vogt, P. Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. Asensio, A. Resta, B. Ealet, and G. Le Lay, Silicene: Compelling Experimental Evidence for Graphenelike Two-Dimensional Silicon, Phys. Rev. Lett. 108, 155501 (2012), doi: 10.1103/PhysRevLett.108.155501.
- M. Ezawa, A Topological Insulator and Helical Zero Mode in Silicene Under an Inhomogeneous Electric Field, New J. Phys. 14, 033003 (2012), doi: 10.1088/1367-2630/14/3/033003.
- N. Drummond, V. Zolyomi, and V. Falko, Electrically Tunable Band Gap in Silicene, Phys. Rev. B 85, doi: 10.1103/PhysRevB.85.075423.
- Z. Zhu, Y. Cheng, U. Schwingenschlogl, Giant Spin-Orbit-Induced Spin Splitting in Two-Dimensional Transition-Metal Dichalcogenide Semiconductors, Phys. Rev. B 84, 153402 (2011), doi: 10.1103/PhysRevB.84.153402.
- Y. Ding and J. Ni, Electronic Structures of Silicon Nanoribbons, Applied Phys. Lett. 95, 083115 (2009), doi: 10.1063/1.3211968.
- B. Kiraly, A. J. Mannix, M. C. Hersam, and N. P. Guisinger, Graphene-silicon Heterostructures at the Two-Dimensional Limit, Chemistry of Materials 27, 6085 (2015), doi: 10.1021/acs.chemmater.5b02602.
- L. Meng, Y. Wang, L. Li, and H.-J. Gao, Fabrication of Graphene-silicon Layered Heterostructures by Carbon Penetration of Silicon Film, Nanotechnology 28, 084003 (2017), doi: 10.1088/1361-6528/aa53cf.
- G. Li, L. Zhang, W. Xu, J. Pan, S. Song, Y. Zhang, H. Zhou, Y. Wang, L. Bao, Y.-Y. Zhang, S. Du, M. Ouyang, S. T. Pantelides, and H.-J. Gao, Stable Silicene in Graphene/silicene Van Der Waals Heterostructures, Advanced Materials 30, 1804650 (2018), doi: 10.1002/adma.201804650.
- B. Liu, J. A. Baimova, C. D. Reddy, S. V. Dmitriev, W. K. Law, X. Q. Feng, and K. Zhou, Interface Thermal Conductance and Rectification in Hybrid Graphene/silicene Monolayer, Carbon 79, 236 (2014), doi: 10.1016/j.carbon.2014.07.064.
- H. Pourmirzaagha and S. Rouhi, Molecular Dynamic Simulations of the Heat Transfer in Double-Layered Graphene/Silicene Nanosheets, Phys. B 666, 415079 (2023), doi: 10.1016/j.physb.2023.415079.
- J. Zhou, H. Li, H.-K. Tang, L. Shao, K. Han, and X. Shen, Phonon Thermal Transport in Silicene/graphene Heterobilayer Nanostructures: Effect of Interlayer Interactions, ACS Omega 7, 5844 (2022), doi: 10.1021/acsomega.1c05932.
- C.-C. Liu, H. Jiang, and Y. Yao, Low-Energy Effective Hamiltonian Involving Spin-Orbit Coupling in Silicene and Two-Dimensional Germanium and Tin, Phys. Rev. B 84, 195430 (2011), doi: 10.1103/PhysRevB.84.195430.
- M. P. L. Sancho, J. M. L. Sancho, J. M. L. Sancho, and J. Rubio, Highly Convergent Schemes for the Calculation of Bulk and Surface Green Functions, J. Phys. F: Metal Physics 15, 851 (1985), doi: 10.1088/0305-4608/15/4/009.
- S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge University Press, Cambridge (1995).
- J. C. Boettger and S. B. Trickey, First-Principles Calculation of the Spin-Orbit Splitting in Graphene, Phys. Rev. B 75, 121402 (2007), doi: 10.1103/PhysRevB.75.121402.
- H. Min, J. E. Hill, N. A. Sinitsyn, B. R. Sahu, L. Kleinman, and A. H. Mac-Donald, Intrinsic and Rashba Spin-Orbit Interactions in Graphene Sheets, Phys. Rev. B 74, 165310 (2006), doi: 10.1103/PhysRevB.74.165310.
Қосымша файлдар
