QUANTUM TRANSPORT THROUGH THE GRAPHENE-SILICENE NANORIBBONS JUNCTION

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this paper, the quantum transport through armchair graphene-silicene nanoribbons junction has been investigated by using non-equilibrium Green’s function method and tight binding approximation in Landauer-Büttiker formalism. The results demonstrate that this junction exhibits metallic behavior in the absence of intrinsic spinorbit interaction and by increasing the size of the intrinsic spin-orbit interaction, the transition from conductor to semiconductor for the system occurs. Moreover, the electron transport characteristics of the system can be controlled by changing the size of the length and width of the junction and the strength of GNR-SiNR coupling. These results can be useful for designing nanoelectronic devices.

About the authors

M. Najarsadeghi

Department of Physics, Sari Branch, Islamic Azad University

Sari, Iran

A. A. Fouladi

Department of Physics, Sari Branch, Islamic Azad University

Email: a.ahmadifouladi@iausari.ac.ir
Sari, Iran

A. Z. Rostami

Department of Physics, Sari Branch, Islamic Azad University

Sari, Iran

A. Pahlavan

Department of Physics, Sari Branch, Islamic Azad University

Sari, Iran

References

  1. M. Brzezinska, Y. Guan, O. V. Yazyev, S. Sachdev, and A. Kruchkov, Engineering Syk Interactions in Disordered Graphene Flakes Under Realistic Experimental Conditions, Phys. Rev. Lett. 131, 036503 (2023), doi: 10.1103/PhysRevLett.131.036503.
  2. Y.-Z. Chou and S. Das Sarma, Kondo Lattice Model in Magic-Angle Twisted Bilayer Graphene, Phys. Rev. Lett. 131, 026501 (2023), doi: 10.1103/PhysRevLett.131.026501.
  3. S. Jois, J. L. Lado, G. Gu, Q. Li, and J. U. Lee, Andreev Reflection and Klein Tunneling in High-Temperature Superconductorgraphene Junctions, Phys. Rev. Lett. 130, 156201 (2023), doi: 10.1103/PhysRevLett.130.156201.
  4. C. Lu, Y. Gao, X. Cao, Y. Ren, Z. Han, Y. Cai, and Z.Wen, Linear and Nonlinear Edge and Corner States in Graphenelike Moire Lattices, Phys. Rev. B 108, 014310 (2023), doi: 10.1103/PhysRevB.108.014310.
  5. G. Yu, Y. Wang, M. I. Katsnelson, and S. Yuan, Origin of the Magic Angle in Twisted Bilayer Graphene From Hybridization of Valence and Conduction Bands, Phys. Rev. B 108, 045138 (2023), doi: 10.1103/PhysRevB.108.045138.
  6. M. Najarsadeghi, A. Ahmadi Fouladi, A. Z. Rostami, and A. Pahlavan, Tunnel Magnetoresistance of Trilayer Graphene-Based Spin Valve, Phys. E 144, 115422 (2022), doi: 10.1016/j.physe.2022.115422.
  7. A. A. Fouladi, Spin-Dependent Transport Properties of Aa-Stacked Bilayer Graphene Nanoribbon, Phys. E 102, 117 (2018), doi: 10.1016/j.physe.2018.05.002.
  8. A. A. Fouladi, Effect of Uniaxial Strain on the Tunnel Magnetoresistance of T-Shaped Graphene Nanoribbon Based Spinvalve, Superlattices and Microstructures 95, 108 (2016), doi: 10.1016/j.spmi.2016.04.043.
  9. A. A. Fouladi and S. Ketabi, Electronic Properties of Z-Shaped Graphene Nanoribbon Under Uniaxial Strain, Phys. E 74, 475 (2015), doi: 10.1016/j.physe.2015.08.018.
  10. G. Le Lay, Silicene Transistors, Nature Nanotech. 10, 202 (2015), doi: 10.1038/nnano.2015.10.
  11. H. Emami-Nejad, A. mir, Z. Lorestaniweiss, A. Farmani, and R. Talebzadeh, First Designing of a Silicene-Based Optical Mosfet With Outstanding Performance, Sci. Rep. 13, 6563 (2023), doi: 10.1038/s41598-023-33620-2.
  12. A. A. Fouladi, Electronic Transport Properties of TShaped Silicene Nanoribbons, Phys. E 91, 101 (2017), doi: 10.1016/j.physe.2016.10.040.
  13. A. A. Fouladi, Quantum Transport Through a ZShaped Silicene Nanoribbon, Chinese Phys. B 26, 047304 (2017), doi: 10.1088/1674-1056/26/4/047304.
  14. B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet, and B. Aufray, Epitaxial Growth of a Silicene Sheet, Appl. Phys. Lett. 97, 223109 (2010), doi: 10.1063/1.3524215.
  15. C. Grazianetti, E. Cinquanta, and A. Molle, Two-Dimensional Silicon: The Advent of Silicene, 2D Materials 3, 012001 (2016), doi: 10.1088/2053-1583/3/1/012001.
  16. P. Vogt, P. Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. Asensio, A. Resta, B. Ealet, and G. Le Lay, Silicene: Compelling Experimental Evidence for Graphenelike Two-Dimensional Silicon, Phys. Rev. Lett. 108, 155501 (2012), doi: 10.1103/PhysRevLett.108.155501.
  17. M. Ezawa, A Topological Insulator and Helical Zero Mode in Silicene Under an Inhomogeneous Electric Field, New J. Phys. 14, 033003 (2012), doi: 10.1088/1367-2630/14/3/033003.
  18. N. Drummond, V. Zolyomi, and V. Falko, Electrically Tunable Band Gap in Silicene, Phys. Rev. B 85, doi: 10.1103/PhysRevB.85.075423.
  19. Z. Zhu, Y. Cheng, U. Schwingenschlogl, Giant Spin-Orbit-Induced Spin Splitting in Two-Dimensional Transition-Metal Dichalcogenide Semiconductors, Phys. Rev. B 84, 153402 (2011), doi: 10.1103/PhysRevB.84.153402.
  20. Y. Ding and J. Ni, Electronic Structures of Silicon Nanoribbons, Applied Phys. Lett. 95, 083115 (2009), doi: 10.1063/1.3211968.
  21. B. Kiraly, A. J. Mannix, M. C. Hersam, and N. P. Guisinger, Graphene-silicon Heterostructures at the Two-Dimensional Limit, Chemistry of Materials 27, 6085 (2015), doi: 10.1021/acs.chemmater.5b02602.
  22. L. Meng, Y. Wang, L. Li, and H.-J. Gao, Fabrication of Graphene-silicon Layered Heterostructures by Carbon Penetration of Silicon Film, Nanotechnology 28, 084003 (2017), doi: 10.1088/1361-6528/aa53cf.
  23. G. Li, L. Zhang, W. Xu, J. Pan, S. Song, Y. Zhang, H. Zhou, Y. Wang, L. Bao, Y.-Y. Zhang, S. Du, M. Ouyang, S. T. Pantelides, and H.-J. Gao, Stable Silicene in Graphene/silicene Van Der Waals Heterostructures, Advanced Materials 30, 1804650 (2018), doi: 10.1002/adma.201804650.
  24. B. Liu, J. A. Baimova, C. D. Reddy, S. V. Dmitriev, W. K. Law, X. Q. Feng, and K. Zhou, Interface Thermal Conductance and Rectification in Hybrid Graphene/silicene Monolayer, Carbon 79, 236 (2014), doi: 10.1016/j.carbon.2014.07.064.
  25. H. Pourmirzaagha and S. Rouhi, Molecular Dynamic Simulations of the Heat Transfer in Double-Layered Graphene/Silicene Nanosheets, Phys. B 666, 415079 (2023), doi: 10.1016/j.physb.2023.415079.
  26. J. Zhou, H. Li, H.-K. Tang, L. Shao, K. Han, and X. Shen, Phonon Thermal Transport in Silicene/graphene Heterobilayer Nanostructures: Effect of Interlayer Interactions, ACS Omega 7, 5844 (2022), doi: 10.1021/acsomega.1c05932.
  27. C.-C. Liu, H. Jiang, and Y. Yao, Low-Energy Effective Hamiltonian Involving Spin-Orbit Coupling in Silicene and Two-Dimensional Germanium and Tin, Phys. Rev. B 84, 195430 (2011), doi: 10.1103/PhysRevB.84.195430.
  28. M. P. L. Sancho, J. M. L. Sancho, J. M. L. Sancho, and J. Rubio, Highly Convergent Schemes for the Calculation of Bulk and Surface Green Functions, J. Phys. F: Metal Physics 15, 851 (1985), doi: 10.1088/0305-4608/15/4/009.
  29. S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge University Press, Cambridge (1995).
  30. J. C. Boettger and S. B. Trickey, First-Principles Calculation of the Spin-Orbit Splitting in Graphene, Phys. Rev. B 75, 121402 (2007), doi: 10.1103/PhysRevB.75.121402.
  31. H. Min, J. E. Hill, N. A. Sinitsyn, B. R. Sahu, L. Kleinman, and A. H. Mac-Donald, Intrinsic and Rashba Spin-Orbit Interactions in Graphene Sheets, Phys. Rev. B 74, 165310 (2006), doi: 10.1103/PhysRevB.74.165310.

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies