MECHANISMS OF IRON DIFFUSION IN α-Ti
- Authors: Gorev N.D.1,2, Bakulin A.V.1,2, Kul'kova S.E.1,2
-
Affiliations:
- Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences
- National Research Tomsk State University
- Issue: Vol 165, No 6 (2024)
- Pages: 807-817
- Section: Articles
- URL: https://journals.rcsi.science/0044-4510/article/view/259041
- DOI: https://doi.org/10.31857/S0044451024060075
- ID: 259041
Cite item
Abstract
Within the transition state theory and the projector augmented-wave method, the mechanisms of iron diffusion in α-Ti were studied. The formation energies of interstitial and substitution defects, as well as the barriers of iron migration in α-Ti along possible paths through both interstitial and vacancy mechanisms were calculated. It was confirmed that the most preferred position for an iron interstitial atom is a crowdion, which formation energy is only 0.17 eV higher than that of iron defect on titanium site. Analytical expressions for the temperature-dependent diffusion coefficients of iron in two crystallographic directions for the interstitial mechanism were obtained by the Landman method. In general, the coefficients of iron diffusion in α-Ti and its anisotropy are consistent with experimental data, while the corresponding diffusion coefficients for the vacancy mechanism are several orders of magnitude lower. The obtained results allow us to conclude that the anomalously fast diffusion of iron in α-Ti is due to the interstitial mechanism.
About the authors
N. D. Gorev
Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences; National Research Tomsk State University
Email: bakulin@ispms.ru
Russian Federation, 634055, Tomsk; 634050, Tomsk
A. V. Bakulin
Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences; National Research Tomsk State University
Email: bakulin@ispms.tsc.ru
Russian Federation, 634055, Tomsk
S. E. Kul'kova
Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences; National Research Tomsk State University
Author for correspondence.
Email: bakulin@ispms.ru
Russian Federation, 634055, Tomsk; 634050, Tomsk
References
- C. Leyens and M. Peters, Titanium and Titanium Alloys: Fundamentals and Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2003).
- M. J. Donachie, Jr. Titanium. A Technical Guide (2nd ed.), ASM International, Materials Park, Ohio (2000).
- M. M. Stupel, M. Bamberger, and M. Ron, J. Less-Common Met. 123, 1 (1986).
- T. Heumann, Diffusion in Metallen: Grundlagen, Theorie, Vorgange in Reinmetallen und Legierungen, Springer-Verlag, Berlin (1992).
- H. Mehrer, Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes, Springer, Berlin (2007).
- Z. Li and W. Gao, in Intermetallics Research Progress, ed. by Y. N. Berdovsky, Nova Sci. Publ., New York (2008), p. 1.
- D. P. Broom, Hydrogen Storage Materials: The Characterisation of Their Storage Properties, Springer, London (2011).
- P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
- M. J. Gillan, J. Phys. C: Solid State Phys. 20, 3621 (1987).
- D. Connetable, Int. J. Hydrogen Energy 44, 32307 (2019).
- M. G. Shelyapina, Hydrogen 3, 285 (2022).
- С. Е. Кулькова, А. В. Бакулин, Л. С. Чумакова, Физ. Мезомех. 25, 51 (2022).
- K. Klyukin, M. G. Shelyapina, and D. Fruchart, J. Alloys Compd. 644, 371 (2015).
- H. H. Wu, P. Wisesa, and D. R. Trinkle, Phys. Rev. B 94, 014307 (2016).
- А. В. Бакулин, С. С. Кульков, С. Е. Кулькова, ЖЭТФ 157, 688 (2020).
- E. Epifano and G. Hug, Comput. Mater. Sci. 174, 109475 (2020).
- D. Connetable, A. Prillieux, C. Thenot et al., J. Phys.: Condens. Matter 32, 175702 (2020).
- L. J. Zhang, T. I. Spiridonova, S. E. Kulkova et al., Comput. Mater. Sci. 128, 236 (2017).
- Y. Hu, L. Suo, Q. Long et al., Vacuum 209, 111739 (2023).
- N. Zou, H. J. Lu, and X. G. Lu, J. Alloys Compd. 803, 684 (2019).
- G. M. Hood and R. J. Schultz, Philos. Mag. 26, 329 (1972).
- H. Nakajima and M. Koiwa, ISIJ Int. 31, 757 (1991).
- L. Scotti and A. Mottura, J. Chem. Phys. 142, 204308 (2015).
- W. W. Xu, S. L. Shang, B. C. Zhou et al., Phys. Chem. Chem. Phys. 18, 16870 (2016).
- R. C. Pasianot, R. A. Perez, V. P. Ramunni et al., J. Nucl. Mater. 392, 100 (2009).
- R. C. Pasianot and R. A. Perez, J. Nucl. Mater. 434, 158 (2013).
- L. J. Zhang, Z. Y. Chen, Q. M. Hu et al., J. Alloys Compd. 740, 156 (2018).
- H. Nakajima, M. Koiwa, and S. Ono, Scr. Metall. 17, 1431 (1983).
- H. Nakajima, M. Koiwa, Y. Minonishi et al., Trans. Jpn. Inst. Met. 24, 655 (1983).
- H. Nakajima andM. Koiwa, in Titanium, Science and Technology, ed. by G. Lutjering, U. Zwicker, and W. Bunk, Deutsche Gesellschaft fur Metallkunde e. V., Oberursel (1984), Vol. 3, p. 1759.
- P. E. Blochl, Phys. Rev. B 50, 17953 (1994).
- G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
- J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
- R. M. Wood, Proc. Phys. Soc. 80, 783 (1962).
- G. Henkelman, B. P. Uberuaga, and H. Jonsson, J. Chem. Phys. 113, 9901 (2000).
- U. Landman and M. F. Shlesinger, Phys. Rev. B 19, 6207 (1979).
- U. Landman and M. F. Shlesinger, Phys. Rev. B 19, 6220 (1979).
- А. В. Бакулин, Л. С. Чумакова, С. Е. Кулькова, ЖЭТФ 160, 206 (2021).
- A. V. Bakulin, L. S. Chumakova, and S. E. Kulkova, Intermetallics 146, 107587 (2022).
- S. Ganeshan, L. G. Hector Jr., and Z. K. Liu, Acta Mater. 59, 3214 (2011).
- P. B. Ghate, Phys. Rev. 133, A1167 (1964).
- A. Y. Lozovoi, A. Alavi, and M. W. Finnis, Phys. Rev. Lett. 85, 610 (2000).
- S. S. Kulkov, A. V. Bakulin, and S. E. Kulkova, Int. J. Hydrogen Energy 43, 43 (2018).
- T. A. Manz and N. G. Limas, RSC Adv. 6, 47771 (2016).
- T. A. Manz, RSC Adv. 7, 45552 (2017).
- R. Dronskowski and P. E. Blochl, J. Phys. Chem. 97, 8617 (1993).
- R. Nelson, C. Ertural, J. George et al., J. Comput. Chem. 41, 1931 (2020).
- H. Wu, T. Mayeshiba, and D. Morgan, Sci. Data 3, 160054 (2016).
- B. Silvi and A. Savin, Nature 371, 683 (1994).
- G. Cacciamani, J. De Keyzer, R. Ferro et al., Intermetallics 14, 1312 (2006).
- B. Medasani, M. Haranczyk, A. Canning et al., Comput. Mater. Sci. 101, 96 (2015).
- V. O. Shestopal, Sov. Phys. Solid State 7, 2798 (1966).
- E. Hashimoto, E. A. Smirnov, and T. Kino, J. Phys. F: Met. Phys. 14, L215 (1984).
- N. Chen, Z. Yu, Acta Metall. Sin. 30, A112 (1994).
Supplementary files
