BEHAVIOR OF MIXTURES OF ACTIVE AND PASSIVE NEMATICS IN A CONFINED TWO-DIMENSIONAL CIRCULAR DOMAIN
- 作者: Mirantsev L.V.1
-
隶属关系:
- Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences (IPME RAS)
- 期: 卷 165, 编号 5 (2024)
- 页面: 718-724
- 栏目: Articles
- URL: https://journals.rcsi.science/0044-4510/article/view/259032
- DOI: https://doi.org/10.31857/S0044451024050110
- ID: 259032
如何引用文章
详细
Using a simple molecular model of passive, active non-chiral and chiral nematics, molecular dynamics simulations were performed to study the behavior of their binary mixtures in a two- dimensional bounded circular domain. Equilibrium structures in these systems were studied under normal and tangential anchoring of particles at the boundaries. It is shown that in mixtures consisting of passive and active model particles, as well as in mixtures of active particles with different chirality, at sufficiently large self-propelling forces, the bounded domain splits into clusters predominantly consisting of particles of the same type. To characterize the degree of separation of mixtures into these clusters, a segregation parameter is introduced. The values of this parameter are calculated for different magnitudes of selfpropelling forces and chirality of model particles.
作者简介
L. Mirantsev
Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences (IPME RAS)
编辑信件的主要联系方式.
Email: mlv@ipme.ru
俄罗斯联邦, 199178, Saint Petersburg
参考
- C. Bechinger, R. Di Leonardo, H. Lowen, C. Reichhardt, and G. Volpe, Rev. Mod. Phys. 88, 045006 (2016).
- A. Doostmohammadi, J. Ignes-Mullo, J. Yeomans, and F. Sagues, Nat. Commun. 9, 3246 (2018).
- M. Norton, A. Baskaran, A. Opathalage, B. Langeslay, S. Fraden, A. Baskaran, and F. Hagan, Phys. Rev. E 97, 012702 (2018).
- A. Maitra and M. Lenz, Nat. Commun. 10, 920 (2019).
- M. Norton, P. Grover, M. Hagan, and S. Fraden, Phys. Rev. Lett. 125, 178005 (2020).
- H. Wioland, F. G. Woodhouse, J. Dunkel, J. O. Kessler, and R. E. Goldstein, Phys. Rev. Lett. 110, 268102 (2013).
- H. Wioland, E. Lushi, and R. E. Goldstein, New J. Phys. 18, 075002 (2016).
- M. Ravnik and J. M. Yeomans, Phys. Rev. Lett. 110, 026001 (2013).
- A. Doostmohammadi and J. M. Yeomans, Eur. Phys. J. Spec. Top. 227, 2401 (2019).
- S. Rana, M. Samsuzzaman, and A. Saha, Soft Matter 15, 8865 (2019).
- S. Das and R. Chelakkot, Soft Matter 16, 7250 (2020).
- S. Das, S. Ghosh, and R. Chelakkot, Phys. Rev. E 102, 032619 (2020).
- S. Das, A. Garg, A. I. Campbell, J. Howse, A. Sen, D. Velegol, R. Golestanian, and S. J. Ebbens, Nat. Commun. 6, 8999 (2015).
- T. Ostapenko, F. J. Schwarzendahl, T. J. Boddeker, C. T. Kreis, J. M. Cammann, G. Mazza, and O. Baumchen, Phys. Rev. Lett. 120, 068002 (2018).
- M. Popescu, S. Dietrich, and G. Oshanin, J. Chem. Phys. 130, 94702 (2009).
- X. Yang, M. L. Manning, and M. C. Marchetti, Soft Matter 10, 6477 (2014).
- L. V. Mirantsev, Eur. Phys. J. E 44, 112 (2021).
- E. J. L. de Oliveira, L. V. Mirantsev, M. L. Lyra, and I. N. de Oliveira, J. Mol. Liq. 377, 121513 (2023).
- A. K. Abramyan, N. M. Bessonov, L. V. Mirantsev, and N. A. Reinberg, Phys. Lett. A 379, 1274 (2015).
- A. K. Abramyan, N. M. Bessonov, L. V. Mirantsev, and A. A. Chevrychkina, Eur. Phys. J. B 91 48 (2018).
- L. V. Mirantsev, Phys. Rev. E 100, 023106 (2019).
- M. P. Allen and J. Tildesly, Computer Simmulations of Liquids, Clarendon Press, Oxford (1989).
补充文件
