УПРАВЛЕНИЕ ТЕМПЕРАТУРОЙ СПИН-ПЕРЕОРИЕНТАЦИОННОГО ПЕРЕХОДА В МОНОКРИСТАЛЛАХ ОРТОФЕРРИТОВ HoFe1−xMNxO3

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Методом оптической зонной плавки выращены монокристаллы HoFe1−xMNxO3 (0 < x < 1). Обнаружено, что в области концентраций x = 0.7–0.8 наблюдается структурный переход от ромбической к гексагональной модификации кристаллов, что было подтверждено рентгеноструктурными исследованиями. Для серии ромбических кристаллов проведены исследования эффекта Мессбауэра при комнатной температуре и магнитные измерения в температурном интервале 4.2–1000 К. Обнаружено, что при увеличении концентрации марганца температура спин-переориентационного перехода значительно возрастает от ∼ 60 К для HoFeO3 до комнатной температуры для состава HoFe0.6 Mn0.4O3. Из магнитных измерений установлено, что при замещении железа на марганец изменяется тип магнитного ориентационного перехода от перехода второго рода (AxFyGz→CxGyFz) к переходу первого рода (AxFyGz→GxCyAz) с наличием слабого ферромагнитного момента только в направлении b (для пространственной группы Pnma). Такое увеличение температуры спин-переоринтационного перехода может быть объяснено изменениями величины косвенного обмена в подсистеме железа из-за влияния марганца, что было обнаружено при исследовании эффекта Мессбауэра в HoFe1−xMNxO3 для образцов с x < 0.4.

Об авторах

К. А. Шайхутдинов

Институт физики им. Л.В. Киренского, ФИЦ КНЦ Сибирского отделения Российской академии наук

Email: smp@iph.krasn.ru
Россия, Краноярск

С. А. Скоробогатов

Институт физики им. Л.В. Киренского, ФИЦ КНЦ Сибирского отделения Российской академии наук

Email: smp@iph.krasn.ru
Россия, Краноярск

Ю. В. Князев

Институт физики им. Л.В. Киренского, ФИЦ КНЦ Сибирского отделения Российской академии наук

Email: smp@iph.krasn.ru
Россия, Краноярск

Т. Н. Камкова

Институт физики им. Л.В. Киренского, ФИЦ КНЦ Сибирского отделения Российской академии наук; Сибирский федеральный университет

Email: smp@iph.krasn.ru
Россия, Краноярск; Краноярск

А. Д. Васильев

Институт физики им. Л.В. Киренского, ФИЦ КНЦ Сибирского отделения Российской академии наук; Сибирский федеральный университет

Email: smp@iph.krasn.ru
Россия, Краноярск; Краноярск

С. В. Семенов

Институт физики им. Л.В. Киренского, ФИЦ КНЦ Сибирского отделения Российской академии наук; Сибирский федеральный университет

Email: smp@iph.krasn.ru
Россия, Краноярск; Краноярск

М. С. Павловский

Институт физики им. Л.В. Киренского, ФИЦ КНЦ Сибирского отделения Российской академии наук; Сибирский федеральный университет

Email: smp@iph.krasn.ru
Россия, Краноярск; Краноярск

А. А. Красиков

Институт физики им. Л.В. Киренского, ФИЦ КНЦ Сибирского отделения Российской академии наук

Автор, ответственный за переписку.
Email: smp@iph.krasn.ru
Россия, Краноярск

Список литературы

  1. R. White, Review of Recent Work on the Magnetic and Spectroscopic Properties of the Rare-Earth Orthoferrites, J. Appl. Phys. 40, 1061 (1969).
  2. К. П. Белов, А. К. Звездин, А. М. Кадомцева, И. Б. Крынецкий. О новых ориентационных переходах в ортоферритах, индуцированных внешним полем, ЖЭТФ 67, 1974 (1975).
  3. К. Белов, А. Звездин, А. Кадомцева, Р. Левитин, Ориентационные переходы в редкоземельных магнетиках, Наука, Москва (1979).
  4. К. П. Белов, А. К. Звездин, А. А. Мухин, Магнитные фазовые переходы в ортоферрите тербия, ЖЭТФ 76, 1100 (1979).
  5. A. Podlesnyak, S. Nikitin, and G. Ehlers, Low-Energy Spin Dynamics in Rare-Earth Perovskite Oxides, J. Phys.: Condens. Matter 33, 403001 (2021).
  6. Y. Tokunaga, N. Furukawa, H. Sakai, Y. Taguchi, T. Arima, and Y. Tokura, Composite Domain Walls in a Multiferroic Perovskite Ferrite, Nature Mater. 8, 558 (2009).
  7. A. Kimel, A. Kirilyuk, P. Usachev, R. Pisarev, A. Balbashov, and T. Rasing, Ultrafast Non-Thermal Control of Magnetization by Instantaneous Photomagnetic Pulses, Nature 435, 655 (2005).
  8. J. De Jong, A. Kimel, R. Pisarev, A. Kirilyuk, and T. Rasing, Laser-Induced Ultrafast Spin Dynamics in ErFeO , Phys. Rev. B 84, 104421 (2011).
  9. J. Jiang, Z. Jin, G. Song, X. Lin, G. Ma, and S. Cao, Dynamical Spin Reorientation Transition in NdFeO Single Crystal Observed With Polarized Terahertz Time Domain Spectroscopy, Appl. Phys. Lett. 103, 062403 (2013).
  10. S. Artyukhin, M. Mostovoy, N. P. Jensen, D. Le, K. Prokes, V. G. De Paula, H. N. Bordallo, A. Maljuk, S. Landsgesell, H. Ryll et al., Solitonic Lattice and Yukawa Forces in the Rare-Earth Orthoferrite TbFeO, Nature Mater. 11, 694 (2012).
  11. S. E. Nikitin, L. Wu, A. S. Sefat, K. A. Shaykhutdinov, Z. Lu, S. Meng, E. V. Pomjakushina, K. Conder, G. Ehlers, M. D. Lumsden et al., Decoupled Spin Dynamics in the Rare-Earth Orthoferrite YbFeO: Evolution of Magnetic Excitations Through the SpinReorientation Transition, Phys. Rev. B 98, 064424 (2018).
  12. K. Saito, A. Sato, A. Bhattacharjee, and M. Sorai, High-Precision Detection of the Heat-Capacity Anomaly Due to Spin Reorientation in TmFeO and HoFeO, Sol. St. Comm. 120, 129 (2001).
  13. A. Ovsianikov, O. Usmanov, I. Zobkalo, V. Hutanu, S. Barilo, N. Liubachko, K. Shaykhutdinov, K. Y. Terentjev, S. Semenov, T. Chatterji et al., Magnetic Phase Diagram of HoFeO by Neutron Diffraction, J. Magn. Magn. Mater. 557, 169431 (2022).
  14. J. Leake, G. Shirane, and J. Remeika, The Magnetic Structure of Thulium Orthoferrite, TmFeO , Sol. St. Comm. 6, 15 (1968).
  15. S. Skorobogatov, K. Shaykhutdinov, D. Balaev, M. Pavlovskii, A. Krasikov, and K. Y. Terentjev, Spin Dynamics and Exchange Interaction in Orthoferrite TbFeO With Non-Kramers Rare-Earth Ion, Phys. Rev. B 106, 184404 (2022).
  16. S. Cao, H. Zhao, B. Kang, J. Zhang, and W. Ren, Temperature Induced Spin Switching in SmFeO Single Crystal, Sci. Reps. 4, 5960 (2014).
  17. I. Dzyaloshinsky, A Thermodynamic Theory of «Weak» Ferromagnetism of Antiferromagnetics, J. Phys. Chem. Sol. 4, 241 (1958).
  18. T. Moriya, Anisotropic Superexchange Interaction and Weak Ferromagnetism, Phys. Rev. 120, 91 (1960).
  19. Y. Fang, Y. Yang, X. Liu, J. Kang, L. Hao, X. Chen, L. Xie, G. Sun, V. Chandragiri, C.-W.Wang et al., Observation оf Re-Entrant Spin Reorientation in TbFeO−MnO, Sci. Rep. 6, 33448 (2016).
  20. J. Kang, Y. Yang, X. Qian, K. Xu, X. Cui, Y. Fang, V. Chandragiri, B. Kang, B. Chen, A. Stroppa et al., Spin-Reorientation Magnetic Transitions in MnDoped SmFeO, IUCrJ 4, 598 (2017).
  21. W. Fan, H. Chen, G. Zhao, X. Ma, R. Chakaravarthy, B. Kang, W. Lu, W. Ren, J. Zhang, and S. Cao, Thermal Control Magnetic Switching Dominated by Spin Reorientation Transition in Mn-Doped PrFeO Single Crystals, Front. Phys. 17, 33504 (2022).
  22. L. Su, X.-Q. Zhang, Q.-Y. Dong, Y.-J. Ke, K.-Y. Hou, H.-t. Yang, and Z.-H. Cheng, Spin Reorientation and Magnetocaloric Effect of GdFe−MnO (0 ::( x ::( 0.3) Single Crystals, Physica B 575, 411687 (2019)
  23. Z. Sun, H. Song, S. Zhu, X. Ma, W. Yang, C. Shi, B. Kang, R. Jia, J.-K. Bao, and S. Cao, Pr-Doping Effect on Spin Switching in NdPr FeO Single Crystal, J. Phys. Chem. C 127, 17592 (2023).
  24. F.-K. Chiang, M.-W. Chu, F. Chou, H. Jeng, H. Sheu, F. Chen, and C. Chen, Effect of Jahn–Teller Distortion on Magnetic Ordering in Dy(FeMn)O Perovskites, Phys. Rev. B 83, 245105 (2011).
  25. R. Vilarinho, D. Passos, E. Queir´os, P. Tavares, A. Almeida, M. Weber, M. Guennou, J. Kreisel, and J. A. Moreira, Suppression of the Cooperative Jahn – Teller Distortion and its Effect on the Raman Octahedra-Rotation Modes of TbMn FeO , Phys. Rev. B 97, 144110 (2018).
  26. P. Mandal, V. S. Bhadram, Y. Sundarayya, C. Narayana, A. Sundaresan, and C. Rao, Spin-Reorientation, Ferroelectricity, and Magnetodielectric Effect in YFe−MnO ( 0.1 ::( x ::( 0.40), Phys. Rev. Lett. 107, 137202 (2011).
  27. G. Song, J. Su, S. Fang, J. Tong, X. Xu, H. Yang, and N. Zhang, Modified Crystal Structure, Dielectric and Magnetic Properties of Cr Doped SmFeO3 Ceramic, Physica B 589, 412185 (2020).
  28. Z. Habib, M. Ikram, K. Sultan, Abida, S. A. Mir, K. Majid, and K. Asokan, Electronic ExcitationInduced Structural, Optical, and Magnetic Properties of Ni-Doped HoFe Thin Films, Appl. Phys. A 123, 442 (2017).
  29. A. Somvanshi, S. Husain, S. Manzoor, N. Zarrin, N. Ahmad, B. Want, and W. Khan, Tuning of Magnetic Properties and Multiferroic Nature: Case Study of Cobalt-Doped NdFeO, Appl. Phys. A 127, 174 (2021).
  30. P. Prakash, V. Sathe, C. Prajapat, A. Nigam, P. Krishna, and A. Das, Spin Phonon Coupling in Mn Doped HoFeO Compounds Exhibiting Spin Reorientation Behaviour, J. Phys. Cond. Matter 32, 095801 (2019).
  31. S. Yuan, Y. Yang, Y. Cao, A. Wu, B. Lu, S. Cao, and J. Zhang, Tailoring Complex Magnetic Phase Transition in HoFeO, Sol. St. Comm. 188, 19 (2014).
  32. L. Holmes, L. Van Uitert, and R. Hecker, Effect of Co on Magnetic Properties of ErFeO, HoFeO , and DyFeO, J. Appl. Phys. 42, 657 (1971).
  33. G. Durbin, C. Johnson, L. Prelorendjo, and M. Thomas, Spin Reorientation in Rare Earth Orthoferrites, J. de Phys. Colloq. 37, С6 (1976).
  34. Y. Sundarayya, P. Mandal, A. Sundaresan, and C. Rao, M¨ossbauer Spectroscopic Study of Spin Reorientation in Mn-Substituted Yttrium Orthoferrite, J. Phys.: Condens. Matter 23, 436001 (2011).
  35. W. Kim, B. Y. Kum, and C. S. Kim, SpinReorientation and M¨ossbauer Study of Orthoferrite TbFeMnO, J. Supercond. Nov. Magn. 24, 867 (2011).
  36. D. Ryan, Q. Stoyel, L. Veryha, K. Xu, W. Ren, and S. Cao, A Single-Crystal M¨ossbauer Study of Spin Reorientations in the Multi-Ferroic HoFeO, IEEE Trans. Magn. 53, 1 (2017).
  37. P. Gu¨tlich, E. Bill, and A. X. Trautwein, M¨ossbauer Spectroscopy and Transition Metal Chemistry: Fundamentals and Applications, Springer Science and Business Media (2010).
  38. N. Lee, Y. Choi, M. Ramazanoglu, I. W. Ratcliff, V. Kiryukhin, and S.-W. Cheong, Mechanism of Exchange Striction of Ferroelectricity in Multiferroic Orthorhombic HoMnO Single Crystals, Phys. Rev. B 84, 020101 (2011).
  39. A. Dubrovskiy, N. Pavlovskiy, S. Semenov, K. Y. Terentjev, and K. Shaykhutdinov, The Magnetostriction of the HoMnO Hexagonal Single Crystals, J. Magn. Magn. Mater. 440, 44 (2017).
  40. V. J. Angadi, K. Manjunatha, S. Kubrin, A. Kozakov, A. Kochur, A. Nikolskii, I. Petrov, S. Shevtsova, and N. Ayachit, Crystal Structure, Valence State of Ions and Magnetic Properties of HoFeO and HoFeSc O Nanoparticles From X-Ray Diffraction, X-Ray Photoelectron, and Mossbauer Spectroscopy Data, J. Alloys Comp. 842, 155805 (2020).
  41. P. Pi na, R. Buentello, H. Arriola, and E. Nava, M¨ossbauer Spectroscopy of Lanthanum and Holmium Ferrites, Hyperfine Interact. 185 173 (2008).
  42. R. Sternheimer, On Nuclear Quadrupole Moments, Phys. Rev. 80, 102 (1950).
  43. R. Sternheimer, On Nuclear Quadrupole Moments, Phys. Rev. 84, 244 (1951).
  44. L. S. V. R. Marathe, and A. Trautwein, Sternheimer Shielding Using Various Approximations, Phys. Rev. A 19, 1852 (1979).
  45. Г. П. Воробьев, А. М. Кадомцева, И. Б. Крынецкий, А. А. Мухин, О необычном характере спиновой переориентации в HoFeO, ЖЭТФ 95, 1049 (1989).
  46. А. М. Балбашов, Г. В. Козлов, С. П. Лебедев, А. А. Мухин, А. Ю. Пронин, А. С. Прохоров, Аномалии высокочастотных магнитных свойств и новые ориентационные переходы в HoFeO, ЖЭТФ 95, 1092 (1989).
  47. I. Lyubutin, P. Naumov, B. Mill, K. Frolov, and E. Demikhov, Structural And Magnetic Properties of the Iron-Containing Langasite Family AMFe XO (A = Ba, Sr; M = Sb, Nb, Ta; X = Si, Ge) observed by M¨ossbauer spectroscopy, Phys. Rev. B 84, 214425 (2011).
  48. E. O. Wollan, and W. C. Koehler, Neutron Diffraction Study of the Magnetic Properties of the Series of Perovskite-Type Compounds [(1 − x)La, xCa]MnO, Phys. Rev. 100, 545 (1955).
  49. J. Hemberger, M. Brando, R. Wehn, V. Y. Ivanov, A. A. Mukhin, A. M. Balbashov, and A. Loidl, Magnetic Properties and Specific Heat of RMnO (R = Pr, Nd) Phys. Rev. B 69, 064418 (2004).

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».