CONTROLLING THE TEMPERATURE OF THE SPIN–REORIENTATION TRANSITION IN HoFe1−xMNxO3ORTHOFERRITE SINGLE CRYSTALS
- Authors: Shaykhutdinov K.A.1, Skorobogatov S.A.1, Knyazev Y.V.1, Kamkova T.N.1,2, Vasil'ev A.D.1,2, Semenov S.V.1,2, Pavlovskiy M.S.1,2, Krasikov A.A.1
-
Affiliations:
- Kirensky Institute of Physics, Federal Research Center KSC SB RAS
- Siberian Federal University
- Issue: Vol 165, No 5 (2024)
- Pages: 685-699
- Section: Articles
- URL: https://journals.rcsi.science/0044-4510/article/view/259029
- DOI: https://doi.org/10.31857/S0044451024050080
- ID: 259029
Cite item
Abstract
HoFe1–xMNxO3 (0 < x < 1) single crystals have been grown by the optical floating zone technique. A structural transition from the orthorhombic to hexagonal modification has been established in the crystals in the concentration range of 0.7–0.8, which has been confirmed by the X–ray diffraction data. For a series of the rhombic crystals, the room- temperature M¨ossbauer study and magnetic measurements in the temperature range of 4.2–1000 K have been carried out. It has been observed that, with an increase in the manganese content in the samples, the temperature of the spin- reorientation transition increases significantly: from 60 K in the HoFeO3 compound to room temperature in HoFe0.6Mn0.4O3. The magnetic measurements have shown that, upon substitution of manganese for iron, the magnetic orientational type transition changes from a second-order transition (AxFy Gz → CxGy Fz ) to first-order one (AxFy Gz → GxCy Az ) with a weak ferromagnetic moment only in the b direction (for Pnma notation). The growth of the spin-reorientation transition temperature has been attributed to the change in the value of the indirect exchange in the iron subsystem under the action of manganese, which has been found when studying the M¨ossbauer effect in the HoFe1–xMNxO3 (x < 0.4) compound.
About the authors
K. A. Shaykhutdinov
Kirensky Institute of Physics, Federal Research Center KSC SB RAS
Email: smp@iph.krasn.ru
Russian Federation, Krasnoyarsk, 660036
S. A. Skorobogatov
Kirensky Institute of Physics, Federal Research Center KSC SB RAS
Email: smp@iph.krasn.ru
Russian Federation, Krasnoyarsk, 660036
Yu. V. Knyazev
Kirensky Institute of Physics, Federal Research Center KSC SB RAS
Email: smp@iph.krasn.ru
Russian Federation, Krasnoyarsk, 660036
T. N. Kamkova
Kirensky Institute of Physics, Federal Research Center KSC SB RAS; Siberian Federal University
Email: smp@iph.krasn.ru
Russian Federation, Krasnoyarsk, 660036; Krasnoyarsk 660041
A. D. Vasil'ev
Kirensky Institute of Physics, Federal Research Center KSC SB RAS; Siberian Federal University
Email: smp@iph.krasn.ru
Russian Federation, Krasnoyarsk, 660036; Krasnoyarsk 660041
S. V. Semenov
Kirensky Institute of Physics, Federal Research Center KSC SB RAS; Siberian Federal University
Email: smp@iph.krasn.ru
Russian Federation, Krasnoyarsk, 660036; Krasnoyarsk 660041
M. S. Pavlovskiy
Kirensky Institute of Physics, Federal Research Center KSC SB RAS; Siberian Federal University
Email: smp@iph.krasn.ru
Russian Federation, Krasnoyarsk, 660036; Krasnoyarsk 660041
A. A. Krasikov
Kirensky Institute of Physics, Federal Research Center KSC SB RAS
Author for correspondence.
Email: smp@iph.krasn.ru
Russian Federation, Krasnoyarsk, 660036
References
- R. White, Review of Recent Work on the Magnetic and Spectroscopic Properties of the Rare-Earth Orthoferrites, J. Appl. Phys. 40, 1061 (1969).
- К. П. Белов, А. К. Звездин, А. М. Кадомцева, И. Б. Крынецкий. О новых ориентационных переходах в ортоферритах, индуцированных внешним полем, ЖЭТФ 67, 1974 (1975).
- К. Белов, А. Звездин, А. Кадомцева, Р. Левитин, Ориентационные переходы в редкоземельных магнетиках, Наука, Москва (1979).
- К. П. Белов, А. К. Звездин, А. А. Мухин, Магнитные фазовые переходы в ортоферрите тербия, ЖЭТФ 76, 1100 (1979).
- A. Podlesnyak, S. Nikitin, and G. Ehlers, Low-Energy Spin Dynamics in Rare-Earth Perovskite Oxides, J. Phys.: Condens. Matter 33, 403001 (2021).
- Y. Tokunaga, N. Furukawa, H. Sakai, Y. Taguchi, T. Arima, and Y. Tokura, Composite Domain Walls in a Multiferroic Perovskite Ferrite, Nature Mater. 8, 558 (2009).
- A. Kimel, A. Kirilyuk, P. Usachev, R. Pisarev, A. Balbashov, and T. Rasing, Ultrafast Non-Thermal Control of Magnetization by Instantaneous Photomagnetic Pulses, Nature 435, 655 (2005).
- J. De Jong, A. Kimel, R. Pisarev, A. Kirilyuk, and T. Rasing, Laser-Induced Ultrafast Spin Dynamics in ErFeO , Phys. Rev. B 84, 104421 (2011).
- J. Jiang, Z. Jin, G. Song, X. Lin, G. Ma, and S. Cao, Dynamical Spin Reorientation Transition in NdFeO Single Crystal Observed With Polarized Terahertz Time Domain Spectroscopy, Appl. Phys. Lett. 103, 062403 (2013).
- S. Artyukhin, M. Mostovoy, N. P. Jensen, D. Le, K. Prokes, V. G. De Paula, H. N. Bordallo, A. Maljuk, S. Landsgesell, H. Ryll et al., Solitonic Lattice and Yukawa Forces in the Rare-Earth Orthoferrite TbFeO, Nature Mater. 11, 694 (2012).
- S. E. Nikitin, L. Wu, A. S. Sefat, K. A. Shaykhutdinov, Z. Lu, S. Meng, E. V. Pomjakushina, K. Conder, G. Ehlers, M. D. Lumsden et al., Decoupled Spin Dynamics in the Rare-Earth Orthoferrite YbFeO: Evolution of Magnetic Excitations Through the SpinReorientation Transition, Phys. Rev. B 98, 064424 (2018).
- K. Saito, A. Sato, A. Bhattacharjee, and M. Sorai, High-Precision Detection of the Heat-Capacity Anomaly Due to Spin Reorientation in TmFeO and HoFeO, Sol. St. Comm. 120, 129 (2001).
- A. Ovsianikov, O. Usmanov, I. Zobkalo, V. Hutanu, S. Barilo, N. Liubachko, K. Shaykhutdinov, K. Y. Terentjev, S. Semenov, T. Chatterji et al., Magnetic Phase Diagram of HoFeO by Neutron Diffraction, J. Magn. Magn. Mater. 557, 169431 (2022).
- J. Leake, G. Shirane, and J. Remeika, The Magnetic Structure of Thulium Orthoferrite, TmFeO , Sol. St. Comm. 6, 15 (1968).
- S. Skorobogatov, K. Shaykhutdinov, D. Balaev, M. Pavlovskii, A. Krasikov, and K. Y. Terentjev, Spin Dynamics and Exchange Interaction in Orthoferrite TbFeO With Non-Kramers Rare-Earth Ion, Phys. Rev. B 106, 184404 (2022).
- S. Cao, H. Zhao, B. Kang, J. Zhang, and W. Ren, Temperature Induced Spin Switching in SmFeO Single Crystal, Sci. Reps. 4, 5960 (2014).
- I. Dzyaloshinsky, A Thermodynamic Theory of «Weak» Ferromagnetism of Antiferromagnetics, J. Phys. Chem. Sol. 4, 241 (1958).
- T. Moriya, Anisotropic Superexchange Interaction and Weak Ferromagnetism, Phys. Rev. 120, 91 (1960).
- Y. Fang, Y. Yang, X. Liu, J. Kang, L. Hao, X. Chen, L. Xie, G. Sun, V. Chandragiri, C.-W.Wang et al., Observation оf Re-Entrant Spin Reorientation in TbFeO−MnO, Sci. Rep. 6, 33448 (2016).
- J. Kang, Y. Yang, X. Qian, K. Xu, X. Cui, Y. Fang, V. Chandragiri, B. Kang, B. Chen, A. Stroppa et al., Spin-Reorientation Magnetic Transitions in MnDoped SmFeO, IUCrJ 4, 598 (2017).
- W. Fan, H. Chen, G. Zhao, X. Ma, R. Chakaravarthy, B. Kang, W. Lu, W. Ren, J. Zhang, and S. Cao, Thermal Control Magnetic Switching Dominated by Spin Reorientation Transition in Mn-Doped PrFeO Single Crystals, Front. Phys. 17, 33504 (2022).
- L. Su, X.-Q. Zhang, Q.-Y. Dong, Y.-J. Ke, K.-Y. Hou, H.-t. Yang, and Z.-H. Cheng, Spin Reorientation and Magnetocaloric Effect of GdFe−MnO (0 ::( x ::( 0.3) Single Crystals, Physica B 575, 411687 (2019)
- Z. Sun, H. Song, S. Zhu, X. Ma, W. Yang, C. Shi, B. Kang, R. Jia, J.-K. Bao, and S. Cao, Pr-Doping Effect on Spin Switching in NdPr FeO Single Crystal, J. Phys. Chem. C 127, 17592 (2023).
- F.-K. Chiang, M.-W. Chu, F. Chou, H. Jeng, H. Sheu, F. Chen, and C. Chen, Effect of Jahn–Teller Distortion on Magnetic Ordering in Dy(FeMn)O Perovskites, Phys. Rev. B 83, 245105 (2011).
- R. Vilarinho, D. Passos, E. Queir´os, P. Tavares, A. Almeida, M. Weber, M. Guennou, J. Kreisel, and J. A. Moreira, Suppression of the Cooperative Jahn – Teller Distortion and its Effect on the Raman Octahedra-Rotation Modes of TbMn FeO , Phys. Rev. B 97, 144110 (2018).
- P. Mandal, V. S. Bhadram, Y. Sundarayya, C. Narayana, A. Sundaresan, and C. Rao, Spin-Reorientation, Ferroelectricity, and Magnetodielectric Effect in YFe−MnO ( 0.1 ::( x ::( 0.40), Phys. Rev. Lett. 107, 137202 (2011).
- G. Song, J. Su, S. Fang, J. Tong, X. Xu, H. Yang, and N. Zhang, Modified Crystal Structure, Dielectric and Magnetic Properties of Cr Doped SmFeO3 Ceramic, Physica B 589, 412185 (2020).
- Z. Habib, M. Ikram, K. Sultan, Abida, S. A. Mir, K. Majid, and K. Asokan, Electronic ExcitationInduced Structural, Optical, and Magnetic Properties of Ni-Doped HoFe Thin Films, Appl. Phys. A 123, 442 (2017).
- A. Somvanshi, S. Husain, S. Manzoor, N. Zarrin, N. Ahmad, B. Want, and W. Khan, Tuning of Magnetic Properties and Multiferroic Nature: Case Study of Cobalt-Doped NdFeO, Appl. Phys. A 127, 174 (2021).
- P. Prakash, V. Sathe, C. Prajapat, A. Nigam, P. Krishna, and A. Das, Spin Phonon Coupling in Mn Doped HoFeO Compounds Exhibiting Spin Reorientation Behaviour, J. Phys. Cond. Matter 32, 095801 (2019).
- S. Yuan, Y. Yang, Y. Cao, A. Wu, B. Lu, S. Cao, and J. Zhang, Tailoring Complex Magnetic Phase Transition in HoFeO, Sol. St. Comm. 188, 19 (2014).
- L. Holmes, L. Van Uitert, and R. Hecker, Effect of Co on Magnetic Properties of ErFeO, HoFeO , and DyFeO, J. Appl. Phys. 42, 657 (1971).
- G. Durbin, C. Johnson, L. Prelorendjo, and M. Thomas, Spin Reorientation in Rare Earth Orthoferrites, J. de Phys. Colloq. 37, С6 (1976).
- Y. Sundarayya, P. Mandal, A. Sundaresan, and C. Rao, M¨ossbauer Spectroscopic Study of Spin Reorientation in Mn-Substituted Yttrium Orthoferrite, J. Phys.: Condens. Matter 23, 436001 (2011).
- W. Kim, B. Y. Kum, and C. S. Kim, SpinReorientation and M¨ossbauer Study of Orthoferrite TbFeMnO, J. Supercond. Nov. Magn. 24, 867 (2011).
- D. Ryan, Q. Stoyel, L. Veryha, K. Xu, W. Ren, and S. Cao, A Single-Crystal M¨ossbauer Study of Spin Reorientations in the Multi-Ferroic HoFeO, IEEE Trans. Magn. 53, 1 (2017).
- P. Gu¨tlich, E. Bill, and A. X. Trautwein, M¨ossbauer Spectroscopy and Transition Metal Chemistry: Fundamentals and Applications, Springer Science and Business Media (2010).
- N. Lee, Y. Choi, M. Ramazanoglu, I. W. Ratcliff, V. Kiryukhin, and S.-W. Cheong, Mechanism of Exchange Striction of Ferroelectricity in Multiferroic Orthorhombic HoMnO Single Crystals, Phys. Rev. B 84, 020101 (2011).
- A. Dubrovskiy, N. Pavlovskiy, S. Semenov, K. Y. Terentjev, and K. Shaykhutdinov, The Magnetostriction of the HoMnO Hexagonal Single Crystals, J. Magn. Magn. Mater. 440, 44 (2017).
- V. J. Angadi, K. Manjunatha, S. Kubrin, A. Kozakov, A. Kochur, A. Nikolskii, I. Petrov, S. Shevtsova, and N. Ayachit, Crystal Structure, Valence State of Ions and Magnetic Properties of HoFeO and HoFeSc O Nanoparticles From X-Ray Diffraction, X-Ray Photoelectron, and Mossbauer Spectroscopy Data, J. Alloys Comp. 842, 155805 (2020).
- P. Pi na, R. Buentello, H. Arriola, and E. Nava, M¨ossbauer Spectroscopy of Lanthanum and Holmium Ferrites, Hyperfine Interact. 185 173 (2008).
- R. Sternheimer, On Nuclear Quadrupole Moments, Phys. Rev. 80, 102 (1950).
- R. Sternheimer, On Nuclear Quadrupole Moments, Phys. Rev. 84, 244 (1951).
- L. S. V. R. Marathe, and A. Trautwein, Sternheimer Shielding Using Various Approximations, Phys. Rev. A 19, 1852 (1979).
- Г. П. Воробьев, А. М. Кадомцева, И. Б. Крынецкий, А. А. Мухин, О необычном характере спиновой переориентации в HoFeO, ЖЭТФ 95, 1049 (1989).
- А. М. Балбашов, Г. В. Козлов, С. П. Лебедев, А. А. Мухин, А. Ю. Пронин, А. С. Прохоров, Аномалии высокочастотных магнитных свойств и новые ориентационные переходы в HoFeO, ЖЭТФ 95, 1092 (1989).
- I. Lyubutin, P. Naumov, B. Mill, K. Frolov, and E. Demikhov, Structural And Magnetic Properties of the Iron-Containing Langasite Family AMFe XO (A = Ba, Sr; M = Sb, Nb, Ta; X = Si, Ge) observed by M¨ossbauer spectroscopy, Phys. Rev. B 84, 214425 (2011).
- E. O. Wollan, and W. C. Koehler, Neutron Diffraction Study of the Magnetic Properties of the Series of Perovskite-Type Compounds [(1 − x)La, xCa]MnO, Phys. Rev. 100, 545 (1955).
- J. Hemberger, M. Brando, R. Wehn, V. Y. Ivanov, A. A. Mukhin, A. M. Balbashov, and A. Loidl, Magnetic Properties and Specific Heat of RMnO (R = Pr, Nd) Phys. Rev. B 69, 064418 (2004).
Supplementary files
