LOCAL STRUCTURE AND SOLIDIFICATION OF GLASSFORMING MELT AL86NI6CO4GD2TB2 UNDER HIGH PRESSURE: EXPERIMENT, MODELING, MACHINE LEARNING
- Authors: Men'shikova S.G.1, Shchelkachev N.M.2
-
Affiliations:
- Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences
- Vereshchagin Institute for High Pressure Physics of the Russian Academy of Sciences
- Issue: Vol 165, No 5 (2024)
- Pages: 655-664
- Section: Articles
- URL: https://journals.rcsi.science/0044-4510/article/view/259026
- DOI: https://doi.org/10.31857/S0044451024050055
- ID: 259026
Cite item
Abstract
High pressure affects melt solidification and its glass-forming ability. Ab initio molecular dynamics calculations show how the local structure of the melt changes with increasing pressure. High pressure promotes the formation of icosahedral clusters in the melt. Rare earth elements: gadolinium, terbium facilitate the formation of icosahedra. At a pressure of 10 GPa and melt temperature of 1800 K, icosahedra atoms form a "percolation cluster". As pressure decreases, the concentration of icosahedra decreases, and at atmospheric pressure, icosahedra are practically absent. Thus, the glass-forming ability of the melt increases with increasing pressure. Using deep machine learning techniques, the dependence of glass transition temperature on high pressure was evaluated: pressure increase from 0 to 10 GPa increases by 1.3 times. The structure of solid alloy samples obtained by cooling its melt from 1800 K at a rate of 1000 degrees/s under 10 GPa pressure was studied. X-ray diffraction and electron microscopy methods showed that the samples are dense and homogeneous, with a fine-dispersed structure. New crystalline phases with cubic (cP 4 / 2) and tetragonal (tI 26 / 1) structures, stable for long periods under normal conditions, were synthesized in the alloy. Rare earth elements play a major role in the formation of the phase with cubic structur (cP 4 / 2). Studies showed that the average hardness of samples obtained at 10 GPa is almost 2 times higher than that of the initial sample obtained at atmospheric pressure, and is about 2 GPa.
About the authors
S. G. Men'shikova
Udmurt Federal Research Centerof the Ural Branch of the Russian Academy of Sciences
Email: svetlmensh@udman.ru
Russian Federation, 426067, Izhevsk
N. M. Shchelkachev
Vereshchagin Institute for High Pressure Physics of the Russian Academy of Sciences
Author for correspondence.
Email: n.chtchelkatchev@gmail.com
Russian Federation, 142190, Moscow, Troitsk
References
- С. Г. Рассолов, Е. А. Свиридова, В. В. Максимов и др., Металлофизика и новейшие технологии 37, 1089 (2015).
- А. L. Belyukov, S. G. Menshikova, and V. I. Ladyanov, J. Phys.: Cond. Matt. 35, 314001 (2023).
- S. G. Menshikova, A. A. Sushkov, and V. V. Brazhkin, Phys. Sol. St. 64, 204 (2022).
- N. M. Chtchelkatchev, M. V. Magnitskaya, V. A. Sidorov et al., Pure and Appl. Chem. 91, 941 (2019).
- Г. Е. Абросимова, А. С. Аронин, ФТТ 59, 2227 (2017).
- A. V. Tsvyashchenko, L. N. Fomicheva, A. A. Sorokin et al., Phys. Rev. B 65, 174513 (2002).
- V. I. Levitas, J. Phys.: Cond. Matt. 30, 163001 (2018).
- V. P. Filonenko, P. V. Zinin, I. P. Zibrov et al., Crystals 8, 448 (2018).
- Yu. A. Sokolovskaya, V. V. Sokolovskiy, M.A. Zagrebin et al., JETP 125, 104 (2017).
- A. M. Satanin, Introduction to the Density Functional Theory, Teaching aid., Nizhny Novgorod (2009), p. 64.
- Ф. М. Гафаров, А. Ф. Галимянов, Искусственные нейронные сети и приложения, Изд-во Казан. унта, Казань (2018).
- Е. О. Хазиева, Н. М. Щелкачев, А. О. Типеев, Р. Е. Рыльцев, ЖЭТФ 164, 980 (2023).
- А.Ю. Чурюмов, Cand. ... Dr. Tech. Sciences, Moscow (2008).
- L. V. Каmaeva, E. N. Tsiok, and N. M. Chtchelkachev, J. Molec. Liquids 393, 123659 (2024).
- L. N. Kolotova, G. E. Norman, and V. V. Pisarev, J. Non-Crystalline Sol. 429 (2015).
- S. G. Menshikova, N. М. Chtchelkatchev, and V. V. Brazhkin, Materialia 28, 101713 (2023).
- V. V. Brazhkin, Cand. ... Dr. phys.-mat. Sciences, Moscow (1996).
- S. G. Menshikova and V. V. Brazhkin, Phys. Sol. St. 64, 197 (2022).
- P. M. Larsen, S. Schmidt, and J. Schiotz, Modelling and Simul. in Mater. Sci. Eng. 24, 055007 (2016).
- D. Turnbull, J. Appl. Phys. 21, 1022 (1950).
- T. Schenk, D. Holland-Moritz, V. Simonet et al., Phys. Rev. Lett. 89, 075507 (2002).
- T. V. Tropin, G. Schulz, J. W. Schmelzer et al., J. Non-Cryst. Solids 409, 63 (2015).
- X. Guo, M. Potuzak, J.C. Mauro et al., J. Non-Cryst. Solids 357, 3230 (2011).
- H. B. Ke, P. Wen, and W.H. Wang, AIP Adv. 2, 041404 (2012).
- B. A. Rusanov, V. E. Sidorov, P. Svec et al., Inorganic Materials 56, 14 (2020).
- T. V. Tropin, J. W. P. Schmelzer, and V. L. Aksenov, Physics-Uspekhi 59 (2016).
Supplementary files
