DIFFUZIYa ATOMOV VODORODA IZ DIELEKTRIChESKIKh PODLOZhEK Si3N4 V AMORFNYE I POLIKRISTALLIChESKIE PLENKI Si I Ge

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Методами дифракция быстрых отраженных электронов и ИК-спектроскопии изучены поликристаллические и аморфные пленки Si и Ge, выращенные на диэлектрических подложках Si3N4/SiO2/Si(001). В ИK-спектрах наблюдается уменьшение интенсивности N–H-полос поглощения в слоях Si3N4, связанное с переходом атомов водорода в растущие пленки Si и Ge. Этот процесс начинается уже при температуре роста пленки 30◦С и усиливается с увеличением температуры роста (30–500◦С) и толщины пленок Si и Ge (50–200 нм). Рассмотрена модель, основанная на предположении, что переход атомов водорода из диэлектрического слоя Si3N4 в растущую пленку Si или Ge контролируется разницей в положении уровней химического потенциала атомов водорода в них и не связан с термодиффузией. Процесс происходит только во время роста слоев Si и Ge и прекращается с его остановкой и с выравниванием уровней химического потенциала.

References

  1. B. J. Hallam, P. G. Hamer, A. M. C. Wenham, C. E. Chan, B. V. Stefani, and S. Wenham, Prog. Photovolt. Res. Appl. 1, 1217 (2020).
  2. W. Soppe, H. Rieffe, and A. Weeber, Prog. Photovolt. Res. Appl. 13, 551 (2005).
  3. R. S. Bonilla, B. Hoex, P. Hamer, and P. R. Wilshaw, Phys. Stat. Sol. (a) 214, 1700293 (2017).
  4. M. Z. Rahman, Renew. Sustain. Energy Rev. 30, 734 (2014).
  5. A. G. Aberle, Sol. Energy Mater. Sol. Cells 65, 239 (2001).
  6. J. Z. Xie, S. P. Murarka, X. S. Guo, and W. A. Lanford, J. Vac. Sci. Technol. B 7, 150 (1989).
  7. P. S. Peercy, H. J. Stein, B. L. Doyle, and S. T. Picraux, J. Electron. Mater. 8, 11 (1979).
  8. C. Boehme and G. Lucovsky, J. Appl. Phys. 88, 6055 (2000).
  9. W. Beyer, Phys. Stat. Sol. (a) 213, 1661 (2016).
  10. W. Beyer, Sol. Energy Mater. Sol. Cells 78, 235 (2003).
  11. C. G. V. D. Walle and R. A. Street, Mat. Res. Soc. Symp. Proc. 377, 389 (1995).
  12. J. Robertson, Phil. Mag. B 69, 307 (1994).
  13. R. A. Street, Phys. Rev. B 43, 2454 (1991).
  14. P. V. Santos, N. M. Johnson, R. A. Street, M. Hack, R. Thompson, and C. C. Tsai, Phys. Rev. B 47, 10244 (1993).
  15. W. B. Jackson and C. C. Tsai, Phys. Rev. B 45, 6564 (1992).
  16. S. C. Deane and M. J. Powell, J. Non-Cryst. Sol. 198200, 295 (1996).
  17. К. В. Чиж, Л. В. Арапкина, В. П. Дубков, Д. Б. Ставровский, В. А. Юрьев, М. С. Сторожевых, Автометрия 58, 79 (2022).
  18. P. Paduschek and P. Eichinger, Appl. Phys. Lett. 36, 62 (1980).
  19. H. J. Stein, J. Electron. Mater. 5, 161 (1976).
  20. K.V. Chizh, L.V. Arapkina, D.B. Stavrovsky, P. I. Gaiduk, and V. A. Yuryev, Mater. Sci. Semicond. Process. 99, 78 (2019).
  21. L. V. Arapkina, K. V. Chizh, D. B. Stavrovskii, V. P. Dubkov, E. P. Lazareva, and V. A. Yuryev, Sol. Energy Mater. Sol. Cells 230, 111231 (2021).
  22. M. S. Storozhevykh, V. P. Dubkov, L. V. Arapkina, K. V. Chizh, S. A. Mironov, V. A. Chapnin, and V. A. Yuryev, Proc. SPIE 10248, 102480O (2017).
  23. D. Davazoglou and V. E. Vamvakas, J. Electrochem. Soc. 150, F90 (2003).
  24. E. A. Taft, J. Electrochem. Soc. 118, 1341 (1971).
  25. W. Beyer, J. Herion, H. Wagner, and U. Zastrow, Phil. Mag. B 63, 269 (1991).
  26. A. Van Wieringen and N. Warmoltz, Physica 22, 849 (1956).
  27. Y. L. Huang, Y. Ma, R. Job, and A. G. Ulyashin, J. Appl. Phys. 96, 7080 (2004).
  28. W. Beyer, J. Non-Cryst. Sol. 198-200, 40 (1996).

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies