COHERENT STATES IN THERMAL QUANTUM TRANSPORT
- Авторлар: Orlenko E.V.1, Orlenko F.E.2
-
Мекемелер:
- Peter the Great St. Petersburg Polytechnic University
- Saint Petersburg State University of Industrial Technologies and Design
- Шығарылым: Том 165, № 5 (2024)
- Беттер: 627-646
- Бөлім: Articles
- URL: https://journals.rcsi.science/0044-4510/article/view/259024
- DOI: https://doi.org/10.31857/S0044451024050031
- ID: 259024
Дәйексөз келтіру
Аннотация
This paper focuses on describing energy transfer by coherent thermal excitations in dielectrics, metamaterials, and nanoscale systems. Using the second quantization technique, a general formalism of thermal conductivity is proposed, considering both the model of free phonons in heat transfer and the formation of coherent Schrödinger states of the oscillator system. A general form of the time-dependent problem solution with arbitrary initial conditions is obtained. An exact solution is analytically derived for the heat flux carried by coherent phonons created by an electronic wave packet produced by a laser pulse effecting a nanomaterial. The obtained exact form of solution in quadratures provides a basis for quantitative description of coherent phonons with various initial conditions, as well as taking into account thermal distributions, which allows for evaluation of thermal properties of nanocrystals. It is shown that under certain ratios of constants characterizing the interaction of phonons with the electronic subsystem, a time-independent heat flux can be established in the crystal.
Авторлар туралы
E. Orlenko
Peter the Great St. Petersburg Polytechnic University
Email: eorlenko@mail.ru
Ресей, 195251, St. Petersburg
F. Orlenko
Saint Petersburg State University of Industrial Technologies and Design
Хат алмасуға жауапты Автор.
Email: eorlenko@mail.ru
Ресей, 191186, St. Petersburg
Әдебиет тізімі
- Suixuan Li, Zihao Qin, Huan Wu, Man Li, M. Kunz, A. Alatas, A. Kavner, and Yongjie Hu, Anomalous Thermal Transport under High Pressure in Boron Arsenide, Nature, www.nature.comhttps:// doi.org/10.1038/s41586-022-05381-x.
- S. Lepri, R. Livi, and A. Politi, Phys. Rev. Lett. 125, 040604 (2020).
- Л. Д. Ландау, Е. М. Лифшиц, Статистическая физика, Теоретическая физика, том 5, Наука, Физматлит, Москва (1964).
- Е. М. Лифшиц, Л. П. Питаевский, Статистическая физика. Теория конденсированного состояния, Теоретическая физика, том 9, Наука, Физматлит, Москва (1978).
- А. В. Юлин, А. В. Пошакинский , А. Н. Поддубный, ЖЭТФ 161, 206 (2022), doi: 10.31857/S0044451022020067.
- P. Cipriani, S. Denisov, and A. Politi, Phys. Rev. Lett. 94, 244301 (2005).
- C. B. Mendland H. Spohn, Phys. Rev. Lett. 111, 230601 (2013).
- A. Dhar, A. Kundu, and A. Kundu, Front. Phys. 7, 159 (2019).
- H. Spohn, J. Stat. Phys. 124, 1041 (2006).
- A. Mielke, Arch. Ration. Mech. Anal. 181, 401 (2006).
- M. Simoncelli, N. Marzari, and F. Mauri, Nat. Phys. 15, 809 (2019).
- L. Isaeva, G. Barbalinardo, D. Donadio, and S. Baroni, Nat. Commun. 10, 3853 (2019).
- Z. Zhang, Y. Guo, M. Bescond, J. Chen, M. Nomura, and S. Volz, Phys. Rev. B 103, 184307 (2021).
- S. Hu, Z. Zhang, P. Jiang, J. Chen, S. Volz, M. Nomura, and B. Li, J. Phys. Chem. Lett. 9, 3959 (2018).
- M. F¨orst, H. Kurz, T. Dekorsy, and R. P. Leavitt, Phys. Rev. B 67, 8, 085305 (2003).
- P. Delsing, A. N. Cleland, M. J. A. Schuetz et al., J. Phys. D 52, 353001 (2019).
- S. Hu, Z. Zhang, P. Jiang, J. Chen, S. Volz, M. Nomura, and B. Li, J. Phys. Chem. Lett. 9, 3959 (2018).
- L. Lindsay, D. A. Broido, and T. L. Reinecke, Phys. Rev. Lett. 111, 25901 (2013).
- J. S. Kang, M. Li, H. Wu, H. Nguyen, and Y. Hu, Science 361, 575 (2018).
- S. Li et al., Science 361, 579 (2018).
- F. Tian et al., Science 361, 582 (2018).
- J. S. Kang et al., Nat. Electron 4, 416 (2021).
- Y. Cui, Z. Qin, H. Wu, M. Li, and Y. Hu, Nat. Commun. 12, 1284 (2021).
- А. Анималу, Квантовая теория кристаллических твердых тел, Мир, Москва (1981), (Alexander O. E. Animalu, Intermediate Quantum Theory of Crystalline Solids, Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1977).
- А. Н. Базь, Я. Б. Зельдович, А. М. Переломов, Рассеяние, реакции и распады в нерелятивистской квантовой механике, Наука, Физматлит, Москва (1971).
- E. V. Orlenko and V. K. Khersonsky, Emission and Absorption of Photons in Quantum Transitions. Coherent States, in: Quantum Science: The Frontier of Physics and Chemistry, ed. by T. Onishi, Springer, Singapore (2022), p. 349, https://doi.org/10.1007/978-981-19-4421-5_6.
- R. Berman, F. E. Simon, and J. Wilks, Nature 42se, 277 (1951).
- S. Hunsche, K. Wieneke, T. Dekorst, and H. Kurz, Phys. Rev. Lett. 75, 1815 (1995).
- T. Dekorsy, G.C. Cho, and H. Kurz, Coherent Phonons in Condensed Media, in: Light Scattering in Solids VIII. Topics in Applied Physics, ed. by M. Cardona and G. Gu¨ntherodt, Vol 76, Springer, Berlin, Heidelberg (2000), https://doi.org/10.1007/BFb0084242.
- J. Lukkarinen, Kinetic Theory of Phonons in Weakly Anharmonic Particle Chains, Springer (2016), p. 159.
- M. N. Luckyanova, J. Garg, K. Esfarjani, A. Jandl, M. T. Bulsara, A. J. Schmidt, A. J. Minnich, S. Chen, M. S. Dresselhaus, and Z. Ren, Science 338, 936 (2012). P. B. Rossen, A. Soukiassian, S. Suresha, J. C. Duda, B. M. Foley, C.-H. Lee, and Y. Zhu, Nat. Mater. 13, 168 (2014).
- Z. Zhang, Y. Guo, M. Bescond, J. Chen, M. Nomura, and S. Volz, Heat Conduction Theory Including Phonon Coherence, APL Mater. 9, 081102 (2021).
Қосымша файлдар
